Skip to main content
Log in

Evaluation of the composition and morphology of a WTi/Si system processed by a picosecond laser

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work we studied the influence of laser radiation on the composition, structure and morphology of WTi thin films deposited on n-type (100) silicon wafers. The films were deposited by d.c. sputtering from a 70:30 at% W-Ti target, using Ar ions, to a thickness of ∼190 nm. Irradiation was performed with a pulsed Nd:YAG laser operating at 1064 nm, whereas the pulse duration was 150 ps. Laser fluences of 3.2 and 5.9 J/cm2 were found to be sufficient for modification of the WTi/silicon target system. The results show: (i) ablation of WTi thin film and a Si substrate in the central zone of spots, (ii) appearance of hydrodynamic features like resolidified material, (iii) partial ablation of the WTi thin film at the periphery and (iv) appearance of thin film cracks at the far periphery. On the non-ablated areas, the laser modification induced changes in composition, such as inter-mixing of components at the WTi/Si interface with formation of silicides in both metals. Surface oxidation was the dominant process in the ablated areas, which is demonstrated by the presence of a SiO2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. S. Bhagat, H. Han, and T. L. Alford, Thin Solid Films 515, 1998 (2006).

    Article  CAS  Google Scholar 

  2. J. M. Oparowski, R. D. Sisson, and R. R. Biederman, Thin Solid Films 153, 313 (1987).

    Article  CAS  Google Scholar 

  3. K. J. Patel, C. J. Panchal, V. A. Kheraj, and M. S. Desai, Mater. Chem. Phys. 114, 475 (2009).

    Article  CAS  Google Scholar 

  4. C. C. Huang, J. C. Tang, and W. H. Tao, Sol. Energy Mater. Sol. Cells 83, 15 (2004).

    Article  CAS  Google Scholar 

  5. H. Ramarotafika and G. Lepperiere, Thin Solid Films 266, 267 (1995).

    Article  CAS  Google Scholar 

  6. K. J. Lethy, D. Beena, R. V. Kumar, V. P. M. Pillai, V. Ganesan, and V. Sathe, Appl. Surf. Sci. 254, 2369 (2008).

    Article  CAS  Google Scholar 

  7. V. Guidi, D. Boscarino, E. Comini, G. Faglia, M. Ferroni, C. Malagu, G. Martinelli, V. Rigato, and G. Sberveglieri, Sensors and Actuators B: Chemical 65, 264 (2000).

    Article  Google Scholar 

  8. C. Louro and A. Cavaleiro, J. Electrochem. Soc. 144, 25 (1997).

    Article  Google Scholar 

  9. M. Milosavljević, N. Bibić, I. H. Wilson, and D. Peruško, Thin Solid Films 164, 493 (1998).

    Article  Google Scholar 

  10. R. S. Nowicki, J. M. Harris, M. A. Nicolet, and I. V. Mitchell, Thin Solid Films 53, 195 (1978).

    Article  CAS  Google Scholar 

  11. V. G. Glebovsky, V. Y. Yaschak, V. V. Baranov, and E. L. Sackovich, Thin Solid Films 257, 1 (1995).

    Article  CAS  Google Scholar 

  12. M. Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore, J. Mat. Sci. 9, 1568 (1998).

    Google Scholar 

  13. M. S. F. Lima, F. P. Ladario, and R. Riva, Appl. Surf. Sci. 252, 4420 (2006).

    Article  CAS  Google Scholar 

  14. I. Iordanova and V. Antonov, Thin Solid Films 516, 7475 (2008).

    Article  CAS  Google Scholar 

  15. D. Baurle, Laser Processing and Chemistry, p.499, in Springer Verlag, Berlin (2000).

  16. G. Dumitru, B. Luscher, M. Krack, J. Hermann, and Y. Gerbig, Int. J. Refract. Met. Hard Mater. 23, 278 (2005).

    Article  CAS  Google Scholar 

  17. P. Stefanov, N. Minkovski, I. Belchev, I. Avramova, N. Sabotinova, and T. Marinova, Appl. Surf. Sci. 253, 1046 (2006).

    Article  CAS  Google Scholar 

  18. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, J. Nanoparticle Res. 4, 499 (2002).

    Article  CAS  Google Scholar 

  19. M. Jaksic, I. Bogdanovic Radovic, M. Bogovac, V. Desnica, S. Fazinic, and M. Karlusic, Nucl. Instr. and Meth. B 260, 114 (2007).

    Article  CAS  Google Scholar 

  20. J. Hermann, C. Boulmer-Leborgne, I. N. Mihailescu, and B. Dubreuil, J. Appl. Phys. 73, 1091 (1993).

    Article  CAS  Google Scholar 

  21. C. M. Wilmsen, Thin Solid Film 39, 105 (1976).

    Article  CAS  Google Scholar 

  22. JCPDS-International Centre for Diffraction Data (ICDD), PCPFWIN v 2.00 (1998).

  23. S. Petrovic, D. Perusko, B. Gakovic, M. Mitric, J. Kovac, A. Zalar, V. Milinovic, I. Bogdanovic-Radovic, and M. Milosavljevic, Surf. Coat. Tech. 204, 2099 (2010).

    Article  CAS  Google Scholar 

  24. G. Suresh Babu, Y. B. Kishore Kumar, Y. Bharath Kumar Reddy, and V. Sundara Raja, Mater. Chem. Phys. 92, 133 (2006).

    Google Scholar 

  25. S. Petrović, B. Gaković, D. Peruško, B. Radak, T. Desai, J. Kovač, P. Panjan, and M. Trtica, Appl. Phys. A 98, 843 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Petrović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrović, S., Peruško, D., Radović-Bogdanović, I. et al. Evaluation of the composition and morphology of a WTi/Si system processed by a picosecond laser. Met. Mater. Int. 18, 457–463 (2012). https://doi.org/10.1007/s12540-012-3012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-3012-4

Key words

Navigation