Skip to main content
Log in

A new method to determine trace boron concentration of iron and steel by SIMS direct ion image

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Boron is often used as a trace additive in steel in order to control the phase transformation behaviors and improve the interfacial cohesion. The aim of this work is to suggest a method to determine the trace boron concentration of iron and steel by direct ion image. The optimum conditions for direct ion imaging were proposed by means of secondary ion mass spectrometry — resistive anode encorder (SIMS-RAE). A method of quantification was examined using standard reference materials, electrolytic iron, high carbon steel, Cr-V steel and stainless steel. For the best secondary ionization efficiency, O2 + ion bombardment and negative secondary ion collection were used. The cluster ions of 11B16O2 and 56Fe16O were detected and processed to reduce the strong matrix effect. Every pixel, P(i, j) of 50 images was integrated and converted to a retrospective depth profile by calculator and profiler. The calibration curve and relative sensitivity factor (RSF) approach were considered. Furthermore, reproducibility of the SIMS data depending on the analytical mode was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. Migeon, F Saldi, Y. Gao, M. Schumacher, Int. J. Mass Spectrometry and Ion process. 143, 51 (1995).

    Article  CAS  Google Scholar 

  2. S. G. Ostrowski, M. E. Kurczy, T. P. Roddy, N. Winograd, and A. G. Ewing, Anal. Chem. 79, 3554 (2007).

    Article  CAS  Google Scholar 

  3. J. L. S. Lee, I. S. Gilmore, and M. P. Seah, Sur. Interface Anal. 40, 1 (2008).

    Article  Google Scholar 

  4. T. Zacharia, ICMCJP, pp. 153–160, American Welding Society, Orlando, Florida (1993).

    Google Scholar 

  5. S. K. Banerji and J. E. Morral, Conf. Proc. pp. 1–215, TMSAIME, Warrendale, PA, USA (1980).

    Google Scholar 

  6. I.-S. Chung and S.-G. Cho, J. Kor. Inst. Met. Mater. 31, 1191 (1993).

    CAS  Google Scholar 

  7. F. B. Pickering, Physical Metallurgy and the design of steels, pp. 1–275, App. Sci., UK (1978).

    Google Scholar 

  8. R. Stuck, J. P. Ponpon, A. Benninghoven, A. M. Huber, and H. W. Werner, Secondary Ion Mass Spectrometry SIMS VI, p. 507, Wiley, New York (1988).

    Google Scholar 

  9. P. Laty, D. Seethanen, and F. Degrev, Surf. Sci. 85, 353 (1979).

    Article  CAS  Google Scholar 

  10. K. Wittmaack, Int. J. Mass Spectrometer, Ion Phys. 17, 39 (1975).

    Article  CAS  Google Scholar 

  11. R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary Ion Mass Spectrometry A Practical Handbook, 2.4.1, John Wiley & Sons, New York (1989).

    Google Scholar 

  12. R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary Ion Mass Spectrometry A Practical Handbook, 3.3, John Wiley & Sons, New York (1989).

    Google Scholar 

  13. H. N. Migeon, F Saldi, Y. Gao, and M. Schumacher, Int. J. Mass Spectrometry and Ion process. 143, 51 (1955).

    Article  Google Scholar 

  14. R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary Ion Mass Spectrometry A Practical Handbook, 3.1.1, John Wiley & Sons, New York (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JaeNam Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Lee, S., Kwun, H. et al. A new method to determine trace boron concentration of iron and steel by SIMS direct ion image. Met. Mater. Int. 18, 361–369 (2012). https://doi.org/10.1007/s12540-012-2023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-2023-5

Key words

Navigation