Skip to main content
Log in

Modification of microstructure and strength/conductivity properties of Cu-15 Ag in-situ composites by equal-channel angular pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Equal-channel angular pressing (ECAP) was carried out on Cu-15 wt% Ag in-situ composites at room temperature. The ECAPed Cu-15 Ag in-situ composite exhibited an ultra-fine two-phase structure with the shape and distribution of the Ag phase dependent on the processing routes. In route A, the initial lamellae of the Ag phase were elongated along the shear direction and developed into filaments, whereas the initial lamellae became finer by fragmentation with no pronounced change of the shape in route Bc. The strength/conductivity combination of 743 MPa/78.6 %IACS was attained in Cu-15 Ag processed by route Bc. The strength of Cu-15 Ag ECAPed using route Bc was greater than that ECAPed using route A, suggesting that substructural strengthening combined with precipitation strengthening is superior to interface strengthening. The electrical conductivity decreased more drastically in route Bc than in route C due to the frequent fragmentation of the lamellae in route Bc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Hong and M. A. Hill, Acta. Mater. 46, 4111 (1998).

    Article  CAS  Google Scholar 

  2. S. I. Hong and M. A. Hill, Mater. Sci. Eng. A 264, 151 (1999).

    Article  Google Scholar 

  3. J. Lin and L. Meng, J. Alloys Compd. 454, 150 (2008).

    Article  CAS  Google Scholar 

  4. K. H. Lee and S. I. Hong, J. Mater. Res. 18, 2194 (2003).

    Article  CAS  Google Scholar 

  5. J. B. Liu, Y. W. Zeng, and L. Meng J. Alloys Compd. 464, 168 (2008).

    Article  CAS  Google Scholar 

  6. A. Benghalem and D. G. Morris, Acta. Mater. 45, 397 (1997).

    Article  CAS  Google Scholar 

  7. J. Freundenberger, W. Grunberger, E. Botcharova, A. Gaganov, and L. Schultz, Adv. Eng. Mater. 4, 677 (2002).

    Article  Google Scholar 

  8. S. Ohsaki, K. Yamazaki, and K. Hono, Scripta Materialia 48, 1569 (2003).

    Article  CAS  Google Scholar 

  9. K. Han, A. A. Vasquez, Y. Xin, and P. N. Kalu, Acta Materialia 51, 767 (2003).

    Article  CAS  Google Scholar 

  10. Y. Sakai and H.-J. Schneider-Muntau, Acta Materialia 45, 1017 (1997).

    Article  CAS  Google Scholar 

  11. Y. Z. Tian, W. Z. Han, H. J. Yang, S. X. Li, S. D. Wu, and Z. F. Zhang, Scripta Mater. 62, 183 (2010).

    Article  CAS  Google Scholar 

  12. K. J. Cho and S. I. Hong, 3 rd Int. Nanoelectronics Conf., p.1291, Hong Kong (2010).

  13. Y. Z. Tian and Z. F. Zhang, Mater. Sci. Eng. A 508, 209 (2009).

    Article  Google Scholar 

  14. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta. Mater. 46, 3317 (1998).

    Article  CAS  Google Scholar 

  15. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta. Mater. 45, 4733 (1997).

    Article  CAS  Google Scholar 

  16. L. Balogh, T. Ungar, Y. Zhao, Y. T. Zhu, Z. Horita, C. Xu, and T. G. Langdon, Acta. Mater. 56, 809 (2008).

    Article  CAS  Google Scholar 

  17. I. S. Yoon, S. I. Hong, and Y. Choi, J. Kor. Inst. Met. & Mater. 42, 418 (2004).

    CAS  Google Scholar 

  18. Y. C. Choi, H. S. Kim, and S. I. Hong, Met. Mater. Int. 15, 733 (2009).

    Google Scholar 

  19. S. I. Hong, M. A. Hill, and H. S. Kim, Metall. Mater. Trans. A 31, 2457 (2000).

    Article  Google Scholar 

  20. S. I. Hong, Scripta Mater. 39, 1685 (1998).

    Article  CAS  Google Scholar 

  21. I. L. Lomaev and E. P. Elsukov, Bull. Russian Academy of Sciences: Physics 72, 1419 (2008).

    Article  Google Scholar 

  22. J. Lendvai, H. J. Gudladt, and V. Gerold, Scripta Mater. 22, 1755 (1988).

    Article  CAS  Google Scholar 

  23. A. Varschavsky, Eng. Fracture Mechanics 46, 151 (1993).

    Article  Google Scholar 

  24. Y. V. Ivanisenko, W. Lojkowski, R. Z. Valiev, and H. J. Fecht, Solid State Phenomena 94, 45 (2003).

    Article  CAS  Google Scholar 

  25. Y. Z. Tian and Z. F. Zhang, Mater. Sci. Eng. 508, 209 (2009).

    Article  Google Scholar 

  26. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta. Mater. 46, 3317 (1998).

    Article  CAS  Google Scholar 

  27. M. Furukawa, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A 332, 97 (2002).

    Article  Google Scholar 

  28. P. B. Prangnell, A. Gholinia, and M. V. Markushev, Investigations and Applications of Severe Plastic Deformation (eds. T. C. Loweand R. Z. Valiev), p. 65, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000).

    Google Scholar 

  29. A. Gholinia, P. B. Prangnell, and M. V. Markushev, Acta Mater. 48, 1115 (2000).

    Article  CAS  Google Scholar 

  30. D. W. Yao and L Meng, Physica B 403, 3384 (2008).

    Article  CAS  Google Scholar 

  31. S. I. Hong, Scripta Mater. 44, 2509 (2001).

    Article  CAS  Google Scholar 

  32. K. J. Cho and S. I. Hong, Korean J. Met. Mater. 49, 128 (2011).

    CAS  Google Scholar 

  33. H. Y. Kwak, S. I. Hong, and K. H. Lee, Korean J. Met. Mater. 49, 995 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Ig Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, KJ., Hong, S.I. Modification of microstructure and strength/conductivity properties of Cu-15 Ag in-situ composites by equal-channel angular pressing. Met. Mater. Int. 18, 355–360 (2012). https://doi.org/10.1007/s12540-012-2022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-2022-6

Key words

Navigation