Skip to main content
Log in

Ductile fracture model in the shearing process of zircaloy sheet for nuclear fuel spacer grids

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Features of sheared edges are predicted based on material properties of Zircaloy obtained from the tensile test and ductile fracture model such as the Gurson-Tvergaard-Needleman (GTN) and Johnson-Cook models. The sheared edges formations are numerically analyzed in each ductile model. An appropriate ductile fracture model is selected to study the relative depth of sheared edges with respect to process parameters. The tendency of failure parameters that are affected by sheared edges and fracture duration is investigated. We applied changes on parameters of failure models to show that the punch force curve and the ratio of characteristic lengths could be coincided, which led us to conclude that the GTN and Johnson-Cook models are equivalent. In the Johnson-Cook model, however, the characteristic length of the sheared edges does not change as each failure parameter reaches a critical value. Hence, the FE prediction model for forming defects is developed using the GTN failure model. Finally, the characteristic length of sheared edges have been measured using the FE prediction model for shearing process parameters such as punch velocities, clearance, and tool wear. Our results showed that the punch-die clearance is the most significant factor that affects forming defects when compared to other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Kunz and K. N. Song, Siemens/KWU Work-Report, U6 312/87/e326 (1987).

  2. S. H. Lee, K. N. Song, and J. Y. Kim, J. Mech. Sci. Technol. 21, 1191 (2007).

    Article  Google Scholar 

  3. S. B. Lee, K. N. Song, and Y. W. Kim, J. Mech. Sci. Technol. 22, 2024 (2008).

    Article  Google Scholar 

  4. K. N. Song and S. S. Kim, J. Laser Micro/Nanoengineering 2, 95 (2007).

    Article  CAS  Google Scholar 

  5. K. N. Song, S. H. Lee, S. B. Lee, J. J. Lee, and G. J. Park, Trans. Korean Society of Mech Eng. 34, 1175 (2010).

    Article  Google Scholar 

  6. T. M. Chang and H. W. Swift, J. Inst. Metal. 78, 393 (1950).

    CAS  Google Scholar 

  7. E. Taupin, J. Breitling, W.-T. Wu, and T. Altan, J. Mat. Proc. Technol. 59, 68 (1996).

    Article  Google Scholar 

  8. D. C. Ko and B. M. Kim, Int. J. Mach. Tools. Manuf. 40, 1329 (1997).

    Article  Google Scholar 

  9. L. Ming, Int. J. Mech. Sci. 42, 889 (2000).

    Article  Google Scholar 

  10. V. Lemiale, J. Chambert, and P. Picart, J. Mat. Process Technol. 209, 2723 (2009).

    Article  CAS  Google Scholar 

  11. S. Yu, X. L. Xie, J. Zhang, and Z. Zhao, J. Mat. Process Technol. 187, 169 (2007).

    Article  Google Scholar 

  12. M. Rachik, J. M. Roelandt, and A. Maillard, J. Mat. Process Technol. 128, 256 (2002).

    Article  Google Scholar 

  13. R. Hambli, J. Mat. Proc. Technol. 116, 252 (2001).

    Article  Google Scholar 

  14. C. Husson, J. P. M. Correia, L. Daridon, and S. Ahzi, J. Mat. Process. Technol. 99, 74 (2008).

    Article  Google Scholar 

  15. S. P. Lo, D. Y. Chang, and Y. Y. Lin, J. Mat. Process. Technol. 194, 126 (2007).

    Article  CAS  Google Scholar 

  16. N. Hatanaka, K. Yamaguchi, and N. Takakura, J. Mat. Process. Technol. 139, 64 (2003).

    Article  CAS  Google Scholar 

  17. W. G. Lee and J. P. Jung, Korean J. Met. Mater 49, 237 (2011).

    Article  CAS  Google Scholar 

  18. A. L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977).

    Article  Google Scholar 

  19. V. Tvergaard, Int. J. Frac. 17, 389 (1981).

    Article  Google Scholar 

  20. V. Tvergaard and A. Needleman, Acta Metall. 32, 157 (1984).

    Article  Google Scholar 

  21. M. Gologanu, J. Leblond, and J. Devaux, J. Mech. Phys. Solids 41, 1723 (1993).

    Article  Google Scholar 

  22. M. Gologanu, J. Leblond, G. Perrin, and J. Devaux, Springer Verlag (1997).

  23. G. R. Johnson and W. H. Cook, Eng. Fract. Mech. 21, 31 (1985).

    Article  Google Scholar 

  24. J. Lemaitre, J. Eng. Mater. Technol. 107, 83 (1985).

    Article  Google Scholar 

  25. G. Rousselier, Nuclear Engineering and Design 105, 97 (1987).

    Article  CAS  Google Scholar 

  26. ABAQUS User’s Manual, Version 6.9, Dassault Systemes Simulia Corp., Providence, RI, USA (2009).

  27. A. Needleman and V. Tvergaard, Brown University Report, Division of Engineering (1985).

  28. A. Franklin, J. Iron Steel Inst 207, 181 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naksoo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Kim, N. & Lee, H. Ductile fracture model in the shearing process of zircaloy sheet for nuclear fuel spacer grids. Met. Mater. Int. 18, 303–316 (2012). https://doi.org/10.1007/s12540-012-2014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-2014-6

Key words

Navigation