Skip to main content
Log in

Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The purposes of this preliminary study were to investigate the effect of increased Ca contents (5–10 wt% Ca) in Mg-Ca alloy on the mechanical properties and osseous healing rate in a standard rat defect model. Mechanical tests were performed using a compression system followed by qualitative histological analysis using the hemotoxylin and eosin (H&E) staining method and quantitative reverse transcriptase polymerase chain reaction (reverse transcriptase PCR). Mg-Ca alloy degraded fast in vivo while displaying a high level of the bone formation markersOC and ALP. Favorablemechanical strength properties were displayed as Ca content increased from 5 wt% to 10 wt% to show its potential to be considered as a load bearing implant material. The resultfrom this study suggests that the developed Mg-Ca alloy has the potential to serve as a biocompatible load bearing implant material that is degradable and possibly osteoconductive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomater. 27, 1728 (2006).

    Article  CAS  Google Scholar 

  2. Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomater. 29, 1329 (2008).

    Article  CAS  Google Scholar 

  3. B. Denkena and A. Lucas, CIRP Annals. 56, 113 (2007).

    Article  Google Scholar 

  4. N. Saris E. Mervaala, H. Karppanen, J. Khawaja, and A. Lewenstam, Clinica Chimica Acta. 294, 1 (2000).

    Article  Google Scholar 

  5. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, and C. J. Wirth, Biomater. 26, 3557 (2005).

    Article  CAS  Google Scholar 

  6. A. Lambotte, Bull. Mem. Soc. Nat. Chir. 28, 1325 (1932).

    Google Scholar 

  7. V. V. Troitskii and D. N. Tsitrin, Khirurgiia 8, 41 (1944).

    Google Scholar 

  8. M. B. Kannan and R. K. Singh Raman, Biomater. 29, 2306 (2008).

    Article  CAS  Google Scholar 

  9. F. Witte, J. Reifenrath, P. Müller, H. Crostack, J. Nellesen, F. Bach, D. Bormann, and M. Rudert, Material Wissen-Schaft Und Werkstofftechnik 37, 504 (2006).

    Article  CAS  Google Scholar 

  10. F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, and C. Blawert, Biomater. 28, 2163 (2007).

    Article  CAS  Google Scholar 

  11. F. Witte, H. Ulrich, M. Rudert, and E. Willbold, J. Biomed. Mater. Res. Part A 81, 748 (2007).

    Article  CAS  Google Scholar 

  12. F. Witte, H. Ulrich, C. Palm, and E. Willbold, J. Biomed. Mater. Res. Part A 81, 757 (2007).

    Article  CAS  Google Scholar 

  13. H. Kuwahara, Y. Al-Abdullat, M. Ohta, S. Tsutsumi, K. Ikeuchi, and N. Mazaki, Mater. Sci. Forum. 350–3, 349 (2000).

    Article  Google Scholar 

  14. R. Erbel, C. DiMario, and J. Bartunek, Lancet. 369, 1869 (2007).

    Article  CAS  Google Scholar 

  15. R. Waksman, R. Pakala, and P. K. Kuchulakanti, Catheter. Cardiovasc. Interv. 68, 607 (2006).

    Article  Google Scholar 

  16. G. D. Zhang, J. J. Huang, K. Yang, B. C. Yang, and H. J. Ai, Acta. Metall. Sinica. 43, 1186 (2007).

    CAS  Google Scholar 

  17. L. P. Xu, G. N. Yu, E. Zhang, F. Pan, and K. Yang, J. Biomed. Mater. Res. 83, 703 (2007).

    Article  Google Scholar 

  18. F. Feyerabend, F. Witte, M. Kammal, and R. Willumeit, Tissue Eng. 12, 3545 (2006).

    Article  CAS  Google Scholar 

  19. R. A. Kaya, H. Cavusoglu, C. Tanik, and A. A. Kaya, J. Neurosurg — Spine 6, 141 (2007).

    Article  Google Scholar 

  20. P. Zartner, R. Cesnjevar, H. Singer, and M. Weyand, Catheter. Cardiovasc. Interv. 66, 590 (2005).

    Article  Google Scholar 

  21. J. Y. Lee, G. Han, Y. C. Kim, J. Y. Byun, J. I. Jang, H. K. Seok, and S. J. Yang, Met. Mater. Int. 15, 955 (2009).

    Article  CAS  Google Scholar 

  22. I. J. Shon, H. S. Kang, K. T. Hong, J. M. Doh, and J. K. Yoon, Korean J. Met. Mater. 49, 614 (2011).

    CAS  Google Scholar 

  23. J. Z. Ilich and J. E. Kerstetter, J. Am. Coll. Nutr. 19, 715 (2000).

    CAS  Google Scholar 

  24. J. F. Nie, Scripta Mater. 37, 1475 (1997).

    Article  CAS  Google Scholar 

  25. J. Y. Choi, B. H. Lee, K. B. Song, R. W Park, I. S. Kim, and K. Y. Sohn, J. Cell. Biochem. 61, 609 (1996).

    Article  CAS  Google Scholar 

  26. L. D. Quarles, D. A. Yohay, L. W. Lever, R. Caton, and R. J. Wenstrup, J. Bone Miner. Res. 7, 683 (1992).

    Article  CAS  Google Scholar 

  27. J. P. Tuckermann, K. Pittois, N. C. Partridge, J. Merregaert, and P. Angel, J. Bone Miner. Res. 15, 1257 (2000).

    Article  CAS  Google Scholar 

  28. S. S. A. El-Rahman, Pharmacol. Res. 47, 189 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Kwang Seok or Seok-Jo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, HS., Kim, YY., Kim, YC. et al. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Met. Mater. Int. 18, 243–247 (2012). https://doi.org/10.1007/s12540-012-2007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-2007-5

Key words

Navigation