Skip to main content
Log in

Deposition of copper oxide by reactive magnetron sputtering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Copper oxide films were deposited on silicon substrates by direct current magnetron sputtering of Cu in a mixture of O2 and Ar gases. Oxidation of the target as a result of adsorption or ion-plating of the reactive gases directly affects the discharge current and composition of the deposited films. We propose a kinetic model that relates the target oxidation to the discharge current, showing a one-to-one relationship between the discharge current characteristics and composition of the deposited films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. J. Herion, Appl. Phys. Lett. 34, 599 (1979).

    Article  CAS  Google Scholar 

  2. S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. NiKi, Phys. Satus Solidi (c) 1, 1067 (2004).

    Article  Google Scholar 

  3. T. Minami, H. Tanaka, T. Shimakawa, T. Miyata, and H. Sato, Jpn. J. Appl. Phys. 43, 917 (2004).

    Article  Google Scholar 

  4. T. J. Richardson, J. L Slack, and M. D. Rubin, Electrochiminica. Acta 46, 2281 (2001).

    Article  CAS  Google Scholar 

  5. J. W. Park, K. J. Baeg, J. Ghim, S. J. Hang, J. H. Park, and D.Y. Kim, Electrochem. Solid-State Lett. 10, H340 (2007).

    Article  CAS  Google Scholar 

  6. J. Ramirez-Ortiz, T. Ogura, J. Medina-Valtierra, Sofia E. Acosta-Ortiz, P. Bosch, J. Antonio de los Reyes, and V. H. Lara, Appl. Surf. Sci. 174, 177 (2001).

    Article  CAS  Google Scholar 

  7. B. Balamurugan, and B. R. Metha, Thin Solid Film 396, 90 (2001).

    Article  CAS  Google Scholar 

  8. S. Ishizuka, T. Maruyama, and K. Akimoto, Jpn. J. Appl. Phys. 37, L786 (2000).

    Article  Google Scholar 

  9. Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, Appl. Phys. Lett. 86, 061901 (2005).

    Article  Google Scholar 

  10. S. E. K. Kim and M. Oliver, Met. Mater. Int. 16, 441 (2010).

    Article  Google Scholar 

  11. M. A. Rahman, H. J. Park, A. R. Kim, C. Y. Lee, and J. G. Lee, Electron. Mater. Lett. 6, 209 (2010).

    Article  CAS  Google Scholar 

  12. A. O. Musa, J. Akometafe, and M. J. Carter, Sol. Energy Mater. Sol. Cells. 51, 305 (1998).

    Article  CAS  Google Scholar 

  13. H. Matsumura, A. Fujii, and T. Kitatani, Jpn. J. Appl. Phys. 35, 5631 (1996).

    Article  CAS  Google Scholar 

  14. T. Kosugi, and S. Kaneko, J. Am. Ceram. Soc. 81, [12]3117 (1998).

    Article  Google Scholar 

  15. J. Morales, L. Sanchez, F. Martin, J.R. Ramos-Barrado, and M. Sanchez, Electrochimica Acta 49, 4589 (2004).

    Article  CAS  Google Scholar 

  16. T. Mahalingam, J. S. P. Chitra, J. P. Chu, S. Velumani, and P. J. Sebastian., Sol. Energy Mater. Sol. Cells. 88, 209 (2005).

    Article  CAS  Google Scholar 

  17. J. Morales, L. Sanchez, S. Bijani, L. Martinez, M. Gabas, and J. R. Ramos-Barrado, Electrochem. Solid-State Lett. 8, A159 (2005).

    Article  CAS  Google Scholar 

  18. Y. L. Liu, Y. C. Liu, R. Mu, H. Yang, C. L. Shao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, Semicond. Sci. Technol. 20, 44 (2005).

    Article  Google Scholar 

  19. William D. Westwood, Sputter Deposition, p. 218 AVS, New York, (2003).

    Google Scholar 

  20. F. Perry, A. Billard, and C. Frantz, Surf. Coat. Technol. 94–95, 681 (1997).

    Article  Google Scholar 

  21. J. Affinito and R. R. Parsons, J. Vac. Sci. Technol. A 2, 1275 (1984).

    Article  CAS  Google Scholar 

  22. B. Szapiro and J. J. Rocca, J. Appl. Phys. 65, 3713 (1989).

    Article  CAS  Google Scholar 

  23. D. N. Popov and P. I. Docheva, Vacuum. 42, 53 (1991).

    Article  CAS  Google Scholar 

  24. John F. O’Hanlon, A User’s Guide to Vacuum Technology, p.195, Wiley, New York (1980).

    Google Scholar 

  25. Michael A. Lieberman, and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, p.255 Wiley, New York (1994).

    Google Scholar 

  26. Brian Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, p. 90, Wiley, New York (1980).

    Google Scholar 

  27. S. Berg, H.-O. Blom, T. Larsson, and C. Nender, J. Vac. Sci. Technol. A 5, 202 (1987).

    Article  CAS  Google Scholar 

  28. J. C. Lin, G. Chen, and C. Lee, J. Electrochem. Soc. 146, 1835 (1999).

    Article  CAS  Google Scholar 

  29. A. Hecq, M. Vandy, and M. Hecq, J. Chem. Phys. 72, 2876 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Jeong, K.H., Cho, W.H. et al. Deposition of copper oxide by reactive magnetron sputtering. Met. Mater. Int. 17, 917–921 (2011). https://doi.org/10.1007/s12540-011-6008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-6008-6

Keywords

Navigation