Skip to main content
Log in

Temperature-dependent structural and transport properties of liquid transition metals

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The evolution of the atomic structures and diffusivity of liquid transition metals with increasing temperature has been studied here using molecular dynamics. An analysis of Honeycutt and Andersen (HA) Indices indicates that relatively low order atomic clusters of rhombohedra-related structures increase with an increase in temperature. The results illustrate that the distortion in the local structural order with a predominant rhombohedra character enhances the diffusivity in liquid metals. The excess entropy approximated by the two-body contribution increases with the distortion of the local structural order traced by the HA Indices. The relationship between the excess entropy and the reduced diffusion coefficient supports the universal scaling law proposed by M. Dzugutov. The calculated diffusivities were compared with predictions of four diffusion models. The temperature dependence of the diffusivity cannot be described by the Arrhenius Law, the moving oscillator model or the free volume model but rather by the density fluctuation model with the square proportionality of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Eyring, Rev. Mod. Phys. 34, 616 (1962).

    Article  Google Scholar 

  2. N. H. Nachtrieb, Adv. Phys. 16, 309 (1967).

    Article  CAS  Google Scholar 

  3. R. A. Swalin, Acta. metall. 7, 736 (1959).

    Article  CAS  Google Scholar 

  4. M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

    Article  CAS  Google Scholar 

  5. N. H. Nachtrieb and B. Bunsenges, Phys. Chem. 80, 678 (1976).

    CAS  Google Scholar 

  6. M. Dzugutov, Nature 381, 137 (1996).

    Article  CAS  Google Scholar 

  7. J. J. Hoyt, M. Asta, and B. Sadigh, Phys. Rev. Lett. 85, 594 (2000).

    Article  CAS  Google Scholar 

  8. J. B. Edwards, E. E. Hucke, and J. J. Martin, Int. Metall. Rev. 13, 1 (1968).

    Google Scholar 

  9. J. P. Garandet, P. Dusserre, J. P. Praizey, J. Abadie, A. Griesche, and V. Botton, Microgravity Space Stat. Util. 1, 29 (2000).

    Google Scholar 

  10. R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).

    Article  CAS  Google Scholar 

  11. P. Protopapas, H. C. Andersen, and N. A. D. Parlee, J. Chem. Phys. 59, 1 (1973).

    Article  Google Scholar 

  12. D. Ben-Amotz and K. G. Willis, J. Phys. Chem. 97, 7736 (1993).

    Article  CAS  Google Scholar 

  13. P. A. Egelstaff, An Introduction to the Liquid State, 2nd ed., p.125–133, Oxford University Press, Oxford (1992).

    Google Scholar 

  14. K. W. Jacobsen, Comments Condens. Mater. Phys. 14, 129 (1988).

    CAS  Google Scholar 

  15. F. Ercolessi, M. Parrinello, and E. Tosatti, Philos. Mag. A 58, 213(1988).

    Article  CAS  Google Scholar 

  16. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  17. F. Ducastelle, J. Phys. (Pairs) 31, 1055 (1970).

    Google Scholar 

  18. K. W. Jacobsen, J. K. Nirsjivm, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).

    Article  CAS  Google Scholar 

  19. F. Ercolessi, E. Tosatti, and M. Parrinello, Phys. Rev. Lett. 57, 719 (1986).

    Article  CAS  Google Scholar 

  20. S. M. Foiles, Phys. Rev. B 32, 3409 (1985).

    Article  CAS  Google Scholar 

  21. M. Asta, D. Morgan, J. J. Hoyt, B. Sadigh, J. D. Althoff, D. de Fontaine, and S. M. Foiles, Phys. Rev. B 59, 14271 (1999).

    Article  CAS  Google Scholar 

  22. M. M. G. Alemany, C. Rey, and L. J. Gallego, J. Chem. Phys. 111, 9111 (1999).

    Article  CAS  Google Scholar 

  23. J. J. Hoyt, B. Sadigh, M. Asta, and S. M. Foiles, Acta mater. 47, 3181 (1999).

    Article  CAS  Google Scholar 

  24. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  CAS  Google Scholar 

  25. C. S. Liu, J. Xia, Z. G. Zhu, and D. Y. Sun, J. Chem. Phys. 114, 7506 (2001).

    Article  CAS  Google Scholar 

  26. F. Willaime and C. Massobrio, Phys. Rev. Lett. 63, 2244 (1989).

    Article  CAS  Google Scholar 

  27. M. J. Lopez, P. A. Marcos, and J. A. Alonso, J. Chem. Phys. 104, 1056 (1996).

    Article  CAS  Google Scholar 

  28. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  29. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  CAS  Google Scholar 

  30. J. Mei and J. W. Davenport, Phys. Rev. B 42, 9682 (1990).

    Article  CAS  Google Scholar 

  31. D. J. Steinberg, Met. Trans. 5, 1341 (1974).

    Article  CAS  Google Scholar 

  32. D. Frenkel and B. Smit, Understanding Molecular Simulation — From Algorithms to Applications, p.133, Academic Press, Inc., Orlando, USA (1987).

    Google Scholar 

  33. A. J. Easteal, L. A. Woolf, and D. L. Jolly, Physica A 127, 344 (1984).

    Article  Google Scholar 

  34. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987).

    Article  CAS  Google Scholar 

  35. Y. Waseda, The Structure of Non-crystalline Materials, p. 272–278, McGraw-Hill, New York (1980).

    Google Scholar 

  36. P. Ganesh and M. Widom, Phys. Rev. B 74, 134205 (2006).

    Article  Google Scholar 

  37. I. Yokoyama, Physica B 271, 230 (1999).

    Article  CAS  Google Scholar 

  38. M. M. G. Alemany, C. Rey, and L. J. Gallego, J. Chem. Phys. 109, 5175 (1998).

    Article  CAS  Google Scholar 

  39. J. I. Akhter, E. Ahmed, and M. Ahmad, Mater. Chem. Phys. 93, 504 (2005).

    Article  CAS  Google Scholar 

  40. J. Mei and J. W. Davenport, Phys. Rev. B 42, 9682 (1990).

    Article  CAS  Google Scholar 

  41. J. Waser and L. Pauling, J. Chem. Phys. 18, 747 (1950).

    Article  CAS  Google Scholar 

  42. E. D. G. Cohen, Physica A 194, 229 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Su, X., Wang, J. et al. Temperature-dependent structural and transport properties of liquid transition metals. Met. Mater. Int. 16, 921–929 (2010). https://doi.org/10.1007/s12540-010-1210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1210-5

Keywords

Navigation