Skip to main content
Log in

Research on the activating flux gas tungsten arc welding and plasma arc welding for stainless steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A systematic study of the effects of activating flux in the weld morphology, arc profile, and angular distortion and microstructure of two different arc welding processes, namely, Gas Tungsten Arc Welding (GTAW) and Plasma Arc Welding (PAW), was carried out. The results showed that the activating fluxes affected the penetration capability of arc welding on stainless steel. An increase in energy density resulting from the arc constriction and anode spot reduction enhanced the penetration capability. The Depth/Width (D/W) ratio of the weld played a major role in causing angular distortion of the weldment. Also, changes in the cooling rate, due to different heat source characteristics, influenced the microstructure from the fusion line to the centre of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kou, Welding Metallurgy, 2 nd ed., p. 13–19, John Wiley & Sons, New, Hoboken (2002).

    Google Scholar 

  2. W. Lucas and D. Howse, Weld. Met. Fabr. 64, 11 (1996).

    CAS  Google Scholar 

  3. P. J. Modenesi, E. R. Apolinário, and I. M. Pereira, J. Mater. Process. Technol. 99, 260 (2000).

    Article  Google Scholar 

  4. H. Fujii, Weld. Int. 19, 934 (2005).

    Article  Google Scholar 

  5. A. Rodrigues and A. Loureiro, Sci. Technol. Weld. Join. 10, 760 (2005).

    Article  CAS  Google Scholar 

  6. A. Rodrigues, A. Loureiro, and A. Batisa, Weld. World 49, 415 (2005).

    CAS  Google Scholar 

  7. H. Yong, F. Ding, and F. Qinghua, Front. Mech. Eng. China 2, 442 (2007).

    Article  Google Scholar 

  8. B. Pollard, Weld. J. 67, 202s (1988).

    Google Scholar 

  9. J. A. Lambert, Weld. J. 70, 41s (1991).

    ADS  Google Scholar 

  10. M. Marya and G. R. Edwards, Weld. J. 81, 291s (2002).

    Google Scholar 

  11. S. Leconte, P. Paillard, and J. Saindrenan, Sci. Technol. Weld. Join. 11, 43 (2006).

    Article  CAS  Google Scholar 

  12. L. M. Liu, Z. D. Zhang, G. Song, and L. Wang, Metall. Mater. Trans. A 38, 649 (2007).

    Article  Google Scholar 

  13. O. E. Ostroviski, Svar. Proiz. 3, 3 (1977).

    Google Scholar 

  14. W. Middel and G. den Ouden, Sci. Technol. Weld. Join. 4, 335 (1996).

    Article  Google Scholar 

  15. S. W. Shyu, H. Y. Huang, K. H. Tseng, and C. P. Chou, J. Mater. Eng. Perform. 17, 193 (2008).

    Article  CAS  Google Scholar 

  16. C. Limmaneevichitr and S. Kou, Weld. J. 79, 324s (2000).

    Google Scholar 

  17. P. Pascal and S. Jacques, Mater. Sci. Forum 426–432, 4087 (2003).

    Google Scholar 

  18. Y. L. Xu, Z. B. Dong, Y. H. Wei, and C. L. Yang, Theor. Appl. Fract. Mech. 48, 178 (2007).

    Article  CAS  Google Scholar 

  19. L. M. Liu, D. H. Cai, and Z. D. Zhang, Scri. Mater. 57, 695 (2007).

    Article  CAS  Google Scholar 

  20. G. Rückert, B. Huneau, and S. Marya, Mater. Desig. 28, 2387 (2007).

    Article  Google Scholar 

  21. A. R. Loureiro, B. F. O. Costa, A. C. Batista, and A. Rodrigues, Sci. Technol. Weld. Join. 14, 315 (2009).

    Article  CAS  Google Scholar 

  22. D. S. Howse and W. Lucas, Sci. Technol. Weld. Join. 5, 189 (2000).

    Article  CAS  Google Scholar 

  23. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshiishi, and C. L. Yang, Sci. Technol. Weld. Join. 5, 397 (2000).

    Article  CAS  Google Scholar 

  24. H. Jamshidi Aval, A. Farzadi, S. Serajzadeh, and A. H. Kokabi, Int. J. Adv. Manuf. Technol. 42, 1043 (2008).

    Article  Google Scholar 

  25. S. Sire and S. Marya, C. R. Mecanique 330, 83 (2002).

    Article  CAS  ADS  Google Scholar 

  26. W. Middel and G. den Ouden, Sci. Technol. Weld. Join. 4, 335 (1999).

    Article  CAS  Google Scholar 

  27. H. Y. Huang, S. W. Shyu, K. H. Tseng, and C. P. Chou, Sci. Technol. Weld. Join. 10, 566 (2005).

    Article  CAS  Google Scholar 

  28. H. Mizukami, T. Suzuki, T. Umeda, and W. Kurz, Mater. Sci. Eng. 173, 361 (1993).

    Article  Google Scholar 

  29. A. Hunter and M. Ferry, Scri. Mater. 46, 253 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Her-Yueh Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HY. Research on the activating flux gas tungsten arc welding and plasma arc welding for stainless steel. Met. Mater. Int. 16, 819–825 (2010). https://doi.org/10.1007/s12540-010-1020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1020-9

Keywords

Navigation