Skip to main content
Log in

Rapid consolidation of nanocrystalline NbSi2-Si3N4 composites by pulsed current activated combustion synthesis

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A dense nanostructured 4NbSi2-Si3N4 composite was synthesized by a Pulsed Current Activated Combustion Synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of NbN and Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. A highly dense 4NbSi2-Si3N4 composite with a relative density of up to 98 % was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average hardness and fracture toughness values obtained were 700 kg/mm2 and 3.5 MPa·m1/2, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. El-Eskandarany, J. Alloy. Compd. 305, 225 (2000).

    Article  CAS  Google Scholar 

  2. L. Fu, L. H. Cao, and Y. S. Fan, Scripta mater. 44, 1061 (2001).

    Article  CAS  Google Scholar 

  3. K. Niihara and A. Nikahira, Advanced Structural Inorganic Composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).

    Google Scholar 

  4. S. Berger, R. Porat, and R. Rosen, Prog. Mater. 42, 311 (1997).

    Article  Google Scholar 

  5. Z. Fang and J. W. Eason, Int. J. Refract. Met. H. 13, 297 (1995).

    Article  CAS  Google Scholar 

  6. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004).

    Article  Google Scholar 

  7. I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Int. 14, 593 (2008).

    Article  CAS  Google Scholar 

  8. M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler, Int. J. of Refractory Met. & Hard Mater. 20, 41 (2002).

    Article  CAS  Google Scholar 

  9. I. J. Shon, S. C. Kim, B. S. Lee, B. R. Kim, Electronic Materials Letters 5, 19 (2009).

    Article  CAS  Google Scholar 

  10. I. K. Jeong, J. M. Doh, I. Y. Ko, and I. J. Shon, J. Kor. Inst. Met. & Mater 46, 223 (2004).

    Google Scholar 

  11. D. Vojtech, B. Barbora, and T. Kubatik, Mater. Sci. Eng. A 361, 50 (2003).

    Article  Google Scholar 

  12. R. Rosenkranz, G. Frommeyer, and W. Smarsly, Mater. Sci. Eng. A 152, 288 (1992).

    Article  Google Scholar 

  13. W. Y. Yang, H. Iwakuro, H. Yagi, T. Kuroda, and S. Nakamura, Jpn. J. Appl. Phys. 23, 1560 (1984).

    Article  CAS  Google Scholar 

  14. G. Sauthoff, Intermetallics, VCH Publishers, New York, (1995).

    Book  Google Scholar 

  15. Y. Ohya, M. J. Hoffmann, and G. Petzow, J. Mater. Sci. Lett. 12, 149 (1993).

    Article  CAS  Google Scholar 

  16. J. Qian, L. L. Daemen, and Y. Zhao, Diam. Relat. Mater. 14, 1669 (2005).

    Article  CAS  Google Scholar 

  17. B. W. Lin and T. Iseki, Br. Ceram. Trans. J. 91, 1 (1992).

    CAS  Google Scholar 

  18. Y. Ohya, M. J. Hoffmann, and G. Petzow, J. Am. Ceram. Soc. 75, 2479 (1992).

    Article  CAS  Google Scholar 

  19. S. K. Bhaumik, C. Divakar, A. K. Singh, and G. S. Upadhyaya, J. Mater. Sci. Eng. A 279, 275 (2000).

    Article  Google Scholar 

  20. D. K. Jang and R. Abbaschian, Kor. J. Mater. Res. 9, 92 (1999).

    CAS  Google Scholar 

  21. H. Zhang, P. Chen, M. Wang, and X. Liu, Rare Metals 21, 304 (2002).

    CAS  Google Scholar 

  22. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloy. Compd. 395, 174 (2005).

    Article  CAS  Google Scholar 

  23. W. Dressler and R. Riedel, Int. J. Refract. Met. H. 15, 13 (1997).

    Article  CAS  Google Scholar 

  24. S. P. Taguchi and S. Ribeiro, J. Mater. Process. Tech. 147, 336 (2004).

    Article  CAS  Google Scholar 

  25. T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, Intermetallics 9, 621 (2001).

    Article  CAS  Google Scholar 

  26. C. Suryanarayana and M. G. Norton, X-ray Diffraction a Practical Approach, Plenum Press, New York, (1998).

    Google Scholar 

  27. N. Koichi, Ceramics 20, 1218 (1985).

    Google Scholar 

  28. J. Guille and L. Matini, J. Mater. Sci. Lett. 7, 952 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jin Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, IY., Park, JH., Nam, KS. et al. Rapid consolidation of nanocrystalline NbSi2-Si3N4 composites by pulsed current activated combustion synthesis. Met. Mater. Int. 16, 393–398 (2010). https://doi.org/10.1007/s12540-010-0608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0608-4

Keywords

Navigation