Skip to main content
Log in

Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al-Si-Ni-Nd alloys with a nominal composition of Al-12 wt.% Si-8 wt.% Ni-5 wt.% Nd alloy are prepared by a conventional casting (ingot) and melt spinning technique at different cooling rates (ν). The effects of the rapid solidification rate on the microstructures and microhardness performances of the specimen alloys are investigated in detail. The results obtained by the XRD, SEM and DSC show that the ingot and melt spun alloys have a multiphase structure. When ν is 5 m/s, the alloy consists of four phases namely α-Al, intermetallic Al3Ni, Al11Nd3, and fcc Si. The melt-spun ribbons are completely composed of α-Al and eutectic Si phases, and primary silicon is not observed when ν increases to 20 m/s, 25 m/s, 30 m/s and 35 m/s. The XRD analysis indicated that the solubility of Si in the α-Al matrix increases greatly with the rapid solidification. The change in microhardness is discussed based on the microstructural observations. The microhardness values of the melt spun ribbons are about three times higher than those of ingot counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez, R. H. Willens, and W. Klement, J. Appl. Phys. 31, 1136 (1960).

    Article  CAS  Google Scholar 

  2. T. R. Anantharmann and C. Suryanarayana, Rapidly Solidified Metals-A Technological Overview (ed., T. R. Anantharaman), p. 5, Trans Tech Publications, Aedermannsdorf, Switzerland (1987).

    Google Scholar 

  3. Y. Birol, J. Alloys Compd. 439, 81 (2007).

    Article  CAS  Google Scholar 

  4. E. J. Lavernia, J. D. Ayers, and T. Srivatsan, Int. Mater. Rev. 37, 5 (1992).

    Google Scholar 

  5. O. Uzun, T. Karaaslan, M. Gögebakan, and M. Keskin, J. Alloy. Compd. 376, 149 (2004).

    Article  CAS  Google Scholar 

  6. E. Karaköse and M. Keskin, J. Alloy. Compd. 466, 111 (2009).

    Google Scholar 

  7. Y. Birol, J. Mater. Sci. 31, 2139 (1996).

    Article  CAS  Google Scholar 

  8. W. W. Park, B. S. You, and N. J. Kim, Met. Mater. Int. 5, 593 (1999).

    CAS  Google Scholar 

  9. Y. Umakoshi, D. P. Pope, and V. Vitek, Acta metall mater. 32, 449 (1984).

    Article  CAS  Google Scholar 

  10. H. Xiao and I. Baker, Scripta metall mater. 28, 1411 (1993).

    Article  CAS  Google Scholar 

  11. M. Wittmann, I. Baker, and PR. Munroe, Philos. Mag. 84, 3169 (2004).

    Article  CAS  Google Scholar 

  12. A. Misra, R. Gibala, and R. D. Noebe, Intermetallics. 9, 971 (2001).

    Article  CAS  Google Scholar 

  13. C. T. Liu and J. O. Stiegler, Science. 226, 636 (1984).

    Article  CAS  Google Scholar 

  14. G. Sauthoff, Intermetallics. 8, 1101 (2000).

    Article  CAS  Google Scholar 

  15. M. Gogebakan, O. Uzun, T. Karaaslan, and M. Keskin, J. Mater. Process. Technol. 142, 87 (2003).

    Article  CAS  Google Scholar 

  16. K. L. Sahoo, M. Wollgarten, J. Haug, and J. Banhart, Acta Mater. 53, 3861 (2005).

    Article  CAS  Google Scholar 

  17. E. Karaköse and M. Keskin, Mater. Charac. 60, 1569 (2009).

    Article  Google Scholar 

  18. T. S. Kim, S. J. Hong, J. H. Lee, and K. W. Kim, Mater. Sci. Eng. A. 311, 227 (2001).

    Google Scholar 

  19. Z. C. Zhong, X. Y. Jiang, and A. L. Greer, Mater. Sci. Eng. A. 228, 531 (1997).

    Article  Google Scholar 

  20. S. H. Wang and X. F. Bian, J. Alloy. Compd. 453, 139 (2008).

    Article  Google Scholar 

  21. Z. P. Luo, S. Q. Zhang, L. Q. Lu, and G. Wei, J. Rare Earths. 4, 296 (1994).

    Google Scholar 

  22. A. Inoue, Mater. Sci. Eng. A. 179, 649 (1994).

    Article  Google Scholar 

  23. N. Unlu, A. Genc, M. L. Ovecoglu, E. J. Lavernia, and F. H. Froes, J. Alloy. Compd. 343, 233 (2002).

    Article  Google Scholar 

  24. N. Unlu, A. Genc, M. L. Ovecoglu, N. Eruslu, and F. H. Froes, J. Alloy. Compd. 322, 256 (2001).

    Article  Google Scholar 

  25. M. L. Ovecoglu, N. Unlu, N. Eruslu, and A. Genc, Mater. Lett. 57, 3298 (2003).

    Article  Google Scholar 

  26. S. P. Midson, Ph. D. Thesis, p.88–106, The university of Sheffield, Sheffield (1982).

  27. A. Hawksworth, W. M. Rainforth, and H. Jones, J. Cryst. Growth. 197, 286 (1999).

    Article  CAS  Google Scholar 

  28. E. M. Savitskii, E. S. Stepanova, and V. F. Terkhova, Izv. Akad. Nauk. SSSR, Otd. Tekh. Nauk Met. Toplivo. 3, 73, (1960).

    Google Scholar 

  29. M. E. Drits, E. S. Kudaner, and N. D. Shoa, Russian Met. 1, 113 (1969).

    Google Scholar 

  30. M. C. Gao, N. Unlu, G. J. Shýflet, M. Mýhalkovic, and M. Wýdom, Metall. Mater. Trans. A. 36, 3269 (2005).

    Article  Google Scholar 

  31. A. Borrego, J. Ibanez, V. Lopez, M. Lieblich, and G. Gonzales-Doncel, Scripta mater. 34, 471 (1996).

    Article  CAS  Google Scholar 

  32. H. J. Rack, Mater. Sci. Eng. 29, 179 (1977).

    Article  CAS  Google Scholar 

  33. I. Dutta and S. M. Allen, J. Mater. Sci. Lett. 10, 323 (1991).

    Article  CAS  Google Scholar 

  34. M. L. Ted Guo, C. Y. A. Tsao, J. L. Huang, and J. Jang, Intermetallics. 14, 1069 (2006).

    Article  Google Scholar 

  35. D. Jacovkis, Y. Xiao, J. Rodriguez-Viejo, M.T. Clavaguera-Mora and N. Clavaguera, Acta mater. 52, 2819 (2004).

    Article  CAS  Google Scholar 

  36. O. Uzun, T. Karaaslan, M. Gogebakan, and M. Keskin, J. Alloy. Compd. 358, 104 (2003).

    Article  CAS  Google Scholar 

  37. S. K. Bose and R. Kumar, J. Mater. Sci. 8, 1795 (1973).

    Article  CAS  Google Scholar 

  38. T. S. Kim, S. J. Hong, and B. T. Lee, Mater. Sci Eng. 363, 81 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Keskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaköse, E., Keskin, M. Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy. Met. Mater. Int. 16, 383–391 (2010). https://doi.org/10.1007/s12540-010-0607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0607-5

Keywords

Navigation