Skip to main content
Log in

Fabrication of a high performance acoustic emission (AE) sensor to monitor and diagnose disturbances in HTS tapes and magnet systems

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An acoustic emission (AE) technique was introduced as a non-destructive method to monitor sudden deformation caused by local heat concentrations and micro-cracks within superconductors and superconducting magnets. However, the detection of AE signals in a high temperature superconductor (HTS) tape is not easy because of its low signal to noise ratio caused by the noise from boiling liquid cryogen or mechanical vibration from the cryo-cooler. Therefore, high performance piezoelectric ceramics are needed to improve the sensitivity of the AE sensor. The aim of this study was to improve the piezoelectric and dielectric properties to enhance the performance of an AE sensor. This study examined the effects of Nb2O5 addition (0.0 wt.% to 2.0 wt.%) on the properties of high performance piezoelectric ceramics, Pb(Zr0.54 Ti0.46)O3 + 0.2 wt.% Cr2O3, sintered at 1200 °C for 2 h. The performance was examined with respect to the acoustic emission response of AE sensors manufactured using the specimens with various Nb2O5 contents. Superior sensor performance was obtained for the AE sensors fabricated with the specimens containing 1.0 wt.% to 1.5 wt.% Nb2O5. The performance and characteristics of the AE sensors were in accordance with their piezoelectric and dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nomura, K. Takahisa, K. Koyama and T. Sakai, Cryogenics 17, 471 (1977).

    Article  CAS  ADS  Google Scholar 

  2. C. Schmidt and G. Pasztor, IEEE Trans. Magn. 13, 116 (1977).

    Article  ADS  Google Scholar 

  3. . Brechna and P. Turowski, Proc. 6 th Intl. Conf. Magnet Tech., p. 597, Bratislava, Slovakia (1978).

    Google Scholar 

  4. O. Tsukamoto, J. F. Maguire, E. S. Bobrov and Y. Iwasa, Appl. Phys. Lett. 39, 172 (1981).

    Article  ADS  Google Scholar 

  5. O. Tsukamoto and Y. Iwasa, Appl. Phys. Lett. 40, 538 (1982).

    Article  ADS  Google Scholar 

  6. O. Tsukamoto and Y. Iwasa, J. Appl. Phys. 54, 997 (1983).

    Article  CAS  ADS  Google Scholar 

  7. S. Caspi and W. V. Hassenzahl, IEEE Trans. Magn. MAG-19, 693 (1983).

    ADS  Google Scholar 

  8. M. Pappe, IEEE Trans. Magn. MAG-19, 1086 (1983).

    Article  ADS  Google Scholar 

  9. Y. Iwasa, E. S. Bobrov, O. Tsukamoto, T. Takaghi, and H. Fujita, Cryogenics 25, 317 (1985).

    Article  Google Scholar 

  10. O. O. Ige, A. D. McInturff, and Y. Iwasa, Cryogenics 26, 131 (1986).

    Article  Google Scholar 

  11. J. Chikaba, F. Irie, K. Funaki, M. Takeo, and K. Yamafuji, IEEE Trans. Magn. MAG-23, 1600 (1987).

    Article  ADS  Google Scholar 

  12. K. Ikizawa, N. Takasu, Y. Murayama, K. Seo, S. Nishijima, K. Katagiri, and T. Okada, IEEE Trans. Magn. 27, 2128 (1991).

    Article  ADS  Google Scholar 

  13. T. Ogitsu, N. Tsuchiya, and A. Devred, IEEE Trans. Magn. 27, 2132 (1991).

    Article  ADS  Google Scholar 

  14. K. Arai, H. Yamaguchi, K. Kaiho, H. Fuji, N. Sadakata, and T. Saitoh, IEEE Trans. Appl. Superconduc. 9, 4648 (1999).

    Article  Google Scholar 

  15. A. Ninomiya, K. Arai, K. Takano, T. Ishigohka, K. Kaiho, H. Nakajima, H. Tsuji, K. Okuno, N. Martovetsky, and I. Rodin, IEEE Trans. Appl. Superconduc. 13, 1408 (2003).

    Article  Google Scholar 

  16. Y. Iwasa, Case Studies in Superconducting Magnets, p. 312–314, Plenum Press, New York (1994).

    Google Scholar 

  17. T. Ishigohka, O. Tsukamoto, and Y. Iwasa, Appl. Phys. Lett. 43, 317 (1983).

    Article  ADS  Google Scholar 

  18. O. Tsukamoto and Y. Iwasa, Appl. Phys. Lett. 44, 922 (1984).

    Article  ADS  Google Scholar 

  19. L. Wożny, P. Lubicki, and B. Mazurek, Cryogenics 33, 825 (1993).

    Article  Google Scholar 

  20. K. Arai and Y. Iwasa, Cryogenics 37, 473 (1997).

    Article  CAS  Google Scholar 

  21. H. G. Lee, H. M. Kim, J. Jankowski, and Y. Iwasa, IEEE Trans. Appl. Supercond. 14, 1298 (2004).

    Article  Google Scholar 

  22. H. M. Kim, K. B. Park, B. W. Lee, I. S. Oh, J. W. Sim, O. B. Hyun, Y. Iwasa, and H. G. Lee, Supercond. Sci. Technol. 20, 506 (2007).

    Article  CAS  ADS  Google Scholar 

  23. B. H. Chen, C. L. Huang, and L. Wu, Solid-State Electron. 48, 2293 (2004).

    Article  CAS  ADS  Google Scholar 

  24. K. W Nam, C. Y. Kang, J. Y. Do, S. H. Ahn, and S. K. Lee, Met. Mater. Int. 7, 227 (2001).

    Article  CAS  Google Scholar 

  25. B. H. Chen, C. L. Huang, and L. Wu, Solid-State Electron. 48, 2293 (2004).

    Article  CAS  ADS  Google Scholar 

  26. C. B. Yoon, S. M. Lee, H. E. Kim, and K. W. Lee, Sensors Actuators A 134, 519 (2007).

    Article  Google Scholar 

  27. A. Garg and D. C. Agrawal Mater. Sci. Eng. B 56, 46 (1999).

    Article  Google Scholar 

  28. R. Griffiths and C. Radford, Calculations in Ceramics, p. 28, Maclaren and Sons Ltd., London (1965).

    Google Scholar 

  29. H. Chen, J. Long, and Z. Meng, Mater. Sci. Eng. B 99, 433 (2003).

    Article  Google Scholar 

  30. W. Z. Zhu and M. Yan, Mater. Sci. Lett. 20, 1527 (2001).

    Article  CAS  Google Scholar 

  31. Y. K. Kim, J. Kor. Inst. Met. & Mater. 45, 609 (2007).

    CAS  Google Scholar 

  32. E. F. Alberta and A. S. Bhalla, Mater. Lett. 54, 47 (2002).

    Article  CAS  Google Scholar 

  33. T. Y. Chen, S. Y. Chu, and Y. D. Juang, Sensors Actuators A 102, 6 (2002).

    Article  Google Scholar 

  34. K. W. Kim, W. Jo, H. R. Jin, N. M. Hwang, and D. Y. Kim, J. Am. Ceram. Soc. 89, 1530 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haigun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Song, JB., Jeong, Y.H. et al. Fabrication of a high performance acoustic emission (AE) sensor to monitor and diagnose disturbances in HTS tapes and magnet systems. Met. Mater. Int. 16, 109–113 (2010). https://doi.org/10.1007/s12540-010-0109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0109-5

Keywords

Navigation