Skip to main content
Log in

Thermal, micro-structural, and electrical properties of a La1−x Sr x Mn0.85Fe0.05Co0.05Ni0.05O3+δ (x = 0–0.4 mole) cathode system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The oxygen stoichiometry, thermal expansion, morphology, and electrical conductivity of a co-doped perovskitetype cathode system, La1−x Sr x Mn0.85Fe0.05Co0.05Ni0.05O3+ä (x = 0–0.4 mole), are studied for intermediate-temperature solid oxide fuel cell applications. Sr2+-doping led to a decrease in the unit cell volume, oxygen stoichiometry, particle size, and activation energy, and an increase in the coefficient of thermal expansion and electrical conductivity. The sample with x = 0.3 mole exhibited four to five fold weight loss with respect to La0.75Sr0.25MnO3+δ at an intermediate temperature range and suggested the availability of a large number of oxygen vacancies due to a co-doping effect. This sample also showed sufficiently high electrical conductivity (∼76 S cm−1) at 650 °C, a low activation energy (∼0.15 eV), and a coefficient of thermal expansion (∼12.1 × 10−6 °C−1) comparable to those of the adjacent components and submicron sized particles. The experimental results are explained using defect models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Tsipis and V. V. Kharton, J. Solid State Electrochem. 12, 1039 (2008).

    Article  CAS  Google Scholar 

  2. O. Yamamoto, Handbook of Fuel Cells — Fundamentals, Technology and Applications Vol. 4 (eds., W. Vielstich, H. A. Gasteiger, and A. Lamm), p. 1002, John Wiley & Sons, Chichester (2003).

    Google Scholar 

  3. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, p.117, Elsevier, Amsterdam (1995).

    Book  Google Scholar 

  4. I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada, and M. Dokiya, Solid State Ionics 86–88, 1197 (1996).

    Article  Google Scholar 

  5. M. Petitjean, G. Caboche, E. Siebert, L. Dessemond, and L. C. Dufour, J. Europ. Ceram. Soc. 25, 2651 (2005).

    Article  CAS  Google Scholar 

  6. E. A. Filonova, A. N. Demina, E. A. Kleibaum, L. Y. Gavrilova, and A. N. Petrov, Inorganic Mater. 42, 443 (2006).

    Article  CAS  Google Scholar 

  7. K. Kakinuma, S. Machida, K. Horiuchi, S. Hasunuma, H. Yamamura, and T. Atake, Solid State Ionics 177, 2159 (2006).

    Article  CAS  Google Scholar 

  8. S. Kuharuangrong, T. Dechakupt, and P. Aungkavattana, Mater. Lett. 58, 1964 (2004).

    Article  CAS  Google Scholar 

  9. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, Solid State Ionics 53–56, 5971 (1992).

    Google Scholar 

  10. A. N. Petrov, V. I. Voronin, T. Norby, and P. Kofstad, J. Solid State Chem. 143, 52 (1999).

    Article  CAS  ADS  Google Scholar 

  11. W. Chen, T. Wen, H. Nie, and R. Zheng, Mater. Res. Bull. 38, 1319 (2003).

    Article  CAS  Google Scholar 

  12. R. V. Wandekar, B. N. Wani, and S. R. Bharadwaj, Solid State Sci. 11, 240 (2009).

    Article  CAS  ADS  Google Scholar 

  13. S. Kuharuangrong, Ceram. Int. 30, 273 (2004).

    Article  CAS  Google Scholar 

  14. R. V. Wandekar, B. N. Wani, and SR. Bharadwaj, Mater. Lett. 59, 2799 (2005).

    Article  CAS  Google Scholar 

  15. A. Berenov, H. Wood, and A. Atkinson, J. Electrochem. Soc. 154, B1362 (2007).

    Article  CAS  Google Scholar 

  16. X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong, and M. Cheng, J. Power Sources 185, 691 (2008).

    Article  CAS  Google Scholar 

  17. Y. Wu and S. K. Hwang, Met. Mater. Int. 7, 191 (2001).

    Article  CAS  Google Scholar 

  18. R. K. Gupta, I. J. Choi, Y. S. Cho, H. L. Lee, and S. H. Hyun, J. Power Sources 187, 371 (2009).

    Article  CAS  Google Scholar 

  19. R. Millini, M. F. Gagliardi, and G. Piro, J. Mater. Sci. 29, 4065 (1994).

    Article  CAS  ADS  Google Scholar 

  20. M. Pechini, US Patent 3330697 (1967).

  21. R. K. Gupta and C. M. Whang, Solid State Ionics 178, 1617 1(2007).

    Article  Google Scholar 

  22. J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto, and T. Hashimoto, Solid State Ionics 129, 163 (2000).

    Article  CAS  Google Scholar 

  23. B. A. van Hassel, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics 66, 295 (1993).

    Article  Google Scholar 

  24. M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, and A. Rousset, Solid State Sci. 4, 125 (2002).

    Article  CAS  ADS  Google Scholar 

  25. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Solid State Ionics 76, 273 (1995).

    Article  CAS  Google Scholar 

  26. K. Huang, H. Y. Lee, and J. B. Goodenough, J. Electrochem. Soc. 145, 3220 (1998).

    Article  CAS  Google Scholar 

  27. R. D. Shannon, Acta Cryst. A32, 751 (1976).

    CAS  Google Scholar 

  28. M. Mori, Y. Hiei, N. M. Sammes, and G. A. Tompsett, J. Electrochem. Soc. 147, 1295 (2000).

    Article  CAS  Google Scholar 

  29. S. Miyoshi, J. O. Hong, K. Yashiro, A. Kaimai, Y. Nigara, K. Kawamura, T. Kawada, and J. Mizusaki, Solid State Ionics 161, 209 (2003).

    Article  CAS  Google Scholar 

  30. R. K. Gupta, E. Y. Kim, H. S. Noh, and C. M. Whang, J. Phys. D: Appl. Phys. 41, 032003 (2008).

    Article  ADS  Google Scholar 

  31. J. A. M. van Roosmalen, J. P. P. Huijsmans, and L. Plomp, Solid State Ionics 66, 279 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Myung Whang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.K., Kim, E.Y., Kim, Y.H. et al. Thermal, micro-structural, and electrical properties of a La1−x Sr x Mn0.85Fe0.05Co0.05Ni0.05O3+δ (x = 0–0.4 mole) cathode system. Met. Mater. Int. 15, 1055–1060 (2009). https://doi.org/10.1007/s12540-009-1055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-1055-y

Keywords

Navigation