Skip to main content
Log in

Covalence of chemical bonds and white-line intensity of an L 3-edge X-ray absorption near-edge structure of rare earth elements embedded in glass

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The covalence of chemical bonds of rare earth ions embedded in glasses is estimated in terms of local structural parameters obtained from an extended X-ray absorption fine structure analysis and interpreted in connection with L 3-edge white-line intensity of the rare earth ions, which, according to some suggestions, is proportional to the covalence. However, the Dy L 3-edge white-line intensity is stronger in Dy-doped sulfide glasses, even though the covalence of the Dy-S bonds is decreased. Moreover, the intensity variations of the Ho L 3-edge white lines in Ho-containing glasses and crystalline compounds reveal no clear correlation with the covalence of the Ho bonds. The amorphous nature of atomic arrangements affects the multiple scattering of photoelectrons and the local electronic density of states. These effects may need to be considered, in addition to the previously suggested screening effect on the electronic transition, when evaluating the L 3-edge white-line intensity and optical properties of rare earth elements doped in glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).

    Article  CAS  ADS  Google Scholar 

  2. A. Polman, J. Appl. Phys. 82, 1 (1997).

    Article  CAS  ADS  Google Scholar 

  3. H. J. Kim, Y. K. Jeong, H. G. Kim, and B. H. Choi, Electron. Mater. Lett. 4, 131 (2008).

    CAS  Google Scholar 

  4. B. R. Judd, Phys. Rev. 127, 750 (1962).

    Article  CAS  ADS  Google Scholar 

  5. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    Article  CAS  ADS  Google Scholar 

  6. Y. G. Choi, R. J. Curry, B. J. Park, K. H. Kim, J. Heo, and D. W. Hewak, J. Appl. Phys. 98, 023523 (2005).

    Article  ADS  Google Scholar 

  7. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, J. Appl. Phys. 88, 3832 (2000).

    Article  CAS  ADS  Google Scholar 

  8. L. D. Carlos, R. A. Sá Ferreira, V. De Zea Bermudez, C. Molina, L. A. Bueno, and S. J. L. Ribeiro, Phys. Rev. B 60, 10042 (1999).

    Article  CAS  ADS  Google Scholar 

  9. C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins, and H. Tolentino, Phys. Rev. Lett. 81, 4652 (1998).

    Article  CAS  ADS  Google Scholar 

  10. K. J. Rao, J. Wong, and M. J. Weber, J. Chem. Phys. 78, 6228 (1983).

    Article  CAS  ADS  Google Scholar 

  11. K. J. Rao, J. Wong, and M. W. Shafer, J. Solid State Chem. 55, 110 (1984).

    Article  CAS  ADS  Google Scholar 

  12. W. Wang, Y. Chen, and T. Hu, Appl. Phys. A 62, 163 (1996).

    Article  ADS  Google Scholar 

  13. A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).

    Article  CAS  ADS  Google Scholar 

  14. A. L. Ankudinov, S. D. Conradson, J. Mustre de Leon, and J. J. Rehr, Phys. Rev. B 57, 7518 (1998).

    Article  CAS  ADS  Google Scholar 

  15. D. Bazin, D. Sayers, J. J. Rehr, and C. Mottet, J. Phys. Chem. B 101, 5332 (1997).

    Article  CAS  Google Scholar 

  16. Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, J. Non-Cryst. Solids 278, 137 (2000).

    Article  ADS  Google Scholar 

  17. Y. G. Choi and J. Heo, J. Non-Cryst. Solids 217, 199 (1997).

    Article  CAS  ADS  Google Scholar 

  18. Y. G. Choi, B. J. Park, and K. H. Kim, Chem. Phys. Lett. 354, 69 (2002).

    Article  CAS  ADS  Google Scholar 

  19. Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, Appl. Phys. Lett. 78, 1249 (2001).

    Article  CAS  ADS  Google Scholar 

  20. Y. G. Choi, R. J. Curry, B. J. Park, K. H. Kim, J. Heo, and D. W. Hewak, Chem. Phys. Lett. 403, 29 (2005).

    Article  CAS  ADS  Google Scholar 

  21. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).

    Article  CAS  Google Scholar 

  22. A. Meetsma, G. A. Wiegers, R. J. Haange, and J. L. de Boer, Acta Cryst. C 47, 2287 (1991).

    Article  Google Scholar 

  23. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B 209, 117 (1995).

    Article  ADS  Google Scholar 

  24. Y. G. Choi, V. A. Chernov, and J. Heo, J. Non-Cryst. Solids 221, 199 (1997).

    Article  CAS  ADS  Google Scholar 

  25. Y. G. Choi, K. S. Sohn, K. H. Kim, and H. D. Park, J. Mater. Res. 17, 31 (2002).

    Article  CAS  ADS  Google Scholar 

  26. D. Haskel, H. Shechter, E. A. Stern, M. Newville, and Y. Yacoby, Phys. Rev. B 47, 14032 (1993).

    Article  CAS  ADS  Google Scholar 

  27. A. Zakery and S. R. Elliott, J. Non-Cryst. Solids 330, 1 (2003).

    Article  CAS  ADS  Google Scholar 

  28. Y. G. Choi, J. Non-Cryst. Solids 353, 1930 (2007).

    Article  CAS  ADS  Google Scholar 

  29. S. Sen, C. W. Ponader, and B. G. Aitken, Phys. Rev. B 64, 104202 (2001).

    Article  ADS  Google Scholar 

  30. J. Heo, J. M. Yoon, and S.Y. Ryou, J. Non-Cryst. Solids 238, 115 (1998).

    Article  CAS  ADS  Google Scholar 

  31. B. G. Aitken, C. W. Ponader, and R. S. Quimby, C. R. Chimie 5, 865 (2002).

    CAS  Google Scholar 

  32. R. D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  33. H. Higuchi, R. Kanno, Y. Kawamoto, M. Takahashi, and K. Kadono, Phys. Chem. Glasses 40, 122 (1999).

    CAS  Google Scholar 

  34. J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, J. Non-Cryst. Solids 353, 1251 (2007).

    Article  CAS  ADS  Google Scholar 

  35. D. Vandormael, F. Grandjean, V. Briois, D. P. Middleton, K. Buschow, and G. J. Long, Phys. Rev. B 56, 6100 (1997).

    Article  CAS  ADS  Google Scholar 

  36. Y. G. Choi, K. A. Lee, and K. S. Lee, Met. Mater. Int. 13, 269 (2007).

    Article  CAS  Google Scholar 

  37. J. H. Song, Y. G. Choi, and J. Heo, J. Non-Cryst. Solids 352, 423 (2006).

    Article  CAS  ADS  Google Scholar 

  38. J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, J. Non-Cryst. Solids 353, 1676 (2007).

    Article  CAS  ADS  Google Scholar 

  39. Y. G. Choi, B. J. Park, and K. H. Kim, Opt. Lett. 28, 622 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. R. D. Shannon and C. T. Prewitt, Acta Cryst. B 25, 925 (1969).

    Article  CAS  Google Scholar 

  41. C. Görller-Walrand, and K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths, Vol. 25 (eds., K. A. Gschneidner Jr. and L. Eyring), chapter 167, Elsevier, Amsterdam (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gyu Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.G. Covalence of chemical bonds and white-line intensity of an L 3-edge X-ray absorption near-edge structure of rare earth elements embedded in glass. Met. Mater. Int. 15, 993–999 (2009). https://doi.org/10.1007/s12540-009-0993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0993-8

Keywords

Navigation