Skip to main content
Log in

Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript


The effects of annealing conditions on microstructural evolution and mechanical properties have been investigated in low carbon, manganese TRIP (Mn TRIP) steel based on a 0.12C-6Mn-0.5Si-3Al alloy system. The microstructure of cold-rolled sheet subjected to annealing at 760 °C to 800 °C for 30 s to 1800 s consists of a recrystallized ferrite matrix and fine-grained austenite with a phase fraction of 25 % to 35 %. Variation of the annealing conditions remarkably influenced the characteristics of constituent phases and thus affected the tensile strength and elongation. Optimization of microstructural parameters such as grain size and fraction of constituent phases, which control the yield strength, overall work hardening, and the kinetics of strain-induced martensite formation, is thus critical for obtaining an exceptional mechanical balance of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. V. Zackay, E. R. Parker, D. Fahr, and R. Bush, Trans. ASM 60, 252 (1967).

    CAS  Google Scholar 

  2. B. C. De Cooman, Solid State Mater. Sci. 8, 285 (2004).

    Article  Google Scholar 

  3. J. Bouquerel, K. Verbeken, and B.C. De Cooman, Acta mater. 54, 1443 (2006).

    Article  CAS  Google Scholar 

  4. S. Zaefferer, J. Ohlert, and W. Bleck, Acta mater. 52, 2765 (2002).

    Article  Google Scholar 

  5. S. J. Park, D. W. Suh, C. S. Oh, and S. J. Kim, Mater. Sci. Forum 558–559, 1423 (2007).

    Article  Google Scholar 

  6. C. Jing, D. W. Suh, C. S. Oh, Z. Wang, and S. J. Kim, Met. Mater. Int. 13, 13 (2007).

    Article  CAS  Google Scholar 

  7. S. J. Kim, C. G. Lee, T. H. Lee, and C. S. Oh, ISIJ Int. 42, 1452 (2002).

    Article  CAS  Google Scholar 

  8. R. L. Miller, Metall. Trans. 3, 905 (1972).

    Article  CAS  Google Scholar 

  9. T. Furukawa, H. Huang, and O. Matsumura, Mater. Sci. Tech. 10, 964 (1994).

    CAS  Google Scholar 

  10. H. Huang, O. Matsumura, and T. Furukawa, Mater. Sci. Tech. 10, 621 (1994).

    CAS  Google Scholar 

  11. D. W. Suh, S. J. Park, T. H. Lee, and S. J. Kim, Metall. Mat. Trans. A (in press).

  12. N. Tsuchida, H. Masuda, Y. Harada, K. Fukaura, Y. Tomota, and K. Nagai, Mater. Sci. Eng. A 488, 446 (2008).

    Article  Google Scholar 

  13. P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay, Acta mater. 49, 139 (2001).

    Article  CAS  Google Scholar 

  14. H. N. Han, C. G. Lee, D. W. Suh, and S. J. Kim, Mater. Sci. Eng. A 485, 224 (2008).

    Article  Google Scholar 

  15. J. Wang and S. V. D. Zwaag, Metall. Mater. Trans. A 32, 1527 (2001).

    Article  Google Scholar 

  16. S. Turteltaub and A. S. J. Suiker, Int. J. Solids Struct. 43, 7322 (2006).

    Article  MATH  CAS  Google Scholar 

  17. D. K. Matlock and J. G. Speer, Proc. the 3 rd Int. Conf. Adv. Struct. Steels, p. 744, Korean Institue Metals and Materials, Gyengjoo, Korea (2006).

    Google Scholar 

  18. S. Y. Han, S. Y. Shin, C. Seo, H. Lee, J. H. Bae, K. Kim, S. Lee, and N. J. Kim, J. Kor. Inst. Met. & Mater. 46, 788 (2008).

    CAS  Google Scholar 

  19. S. Y. Shin, K. Oh, and Lee, J. Kor. Inst. Met. & Mater. 47, 59 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dong-Woo Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, JM., Kim, SJ., Kang, N.H. et al. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel. Met. Mater. Int. 15, 909–916 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: