Skip to main content
Log in

Characterization of NiCo composite silicides by 10 nm-Ni50Co50 alloy films with additional annealing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We fabricated 10 nm-Ni50Co50 alloy films into a single crystal and a polycrystalline silicon substrate, and applied silicidation annealing to these substrates at 600 °C to 1100 °C for 40 s. To test the thermal stability of the processed silicide layers, we examined the change in their physical properties after an additional 30-min annealing at the given rapid thermal annealing (RTA) temperatures. To characterize the physical properties of the silicide layers, we used a four-point probe, an x-ray diffractometer (XRD), a transmission electron microscope, a scanning electron microscope, an Auger electron spectroscope, and an atomic force microscope. The silicide layer formed only through RTA showed low resistance (20 Ω/sq) at up to 1100 °C and 900 °C for the single crystal and for the polycrystalline silicon substrate, respectively. Sheet resistance after the additional 30-min annealing was low, and did not differ significantly before and after the additional annealing for the single crystal substrate, but it became high at all temperatures for the polycrystalline substrate. The XRD confirmed the formation of the NiSi (or Ni(Co)Si) phase, in which there were no changes after the additional annealing. The thickness of the RTA-formed silicide layers varied from 11 nm to 13 nm, 20 nm and 28 nm, depending on whether the temperature was 700 °C or 1000 °C, for both the single and the polycrystalline substrates. The thickness of the silicide layers tended to increase from 22 nm to 25 nm, 48 nm and 82 nm after the additional 30-min annealing. Auger depth profiling also confirmed changes in thickness with the additional annealing. The surface roughness was no greater than 10 nm in all cases, even with the additional annealing. We verified that the nano-silicide layer formed with the proposed nano-NiCo alloy films satisfied the requirements for the nano-CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lindsay, A. Lauwers, M. de Potter, N. Roelandts, C. Vrancken, and K. Maex, Microelectron. Eng. 55, 157 (2001).

    Article  CAS  Google Scholar 

  2. International Technology Road Map for Semiconductors, 2003 ed., p. 25, Front End Process, SIA (2003).

  3. E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Eng. 16, 43 (1996).

    Article  Google Scholar 

  4. J. Prokop, C. E. Zybill, and S. Veprek, Thin Solid Films 359, 39 (2000).

    Article  ADS  CAS  Google Scholar 

  5. C. Detavernier, R. L. Van Meirhaeghe, and F. Cardon, J. Appl. Phys. 88, 133 (2000).

    Article  ADS  CAS  Google Scholar 

  6. H. Fang, M. C. Ozturk, E. G. Seebauer, and D. E. Batchelor, J. Electrochem. Soc. 146, 4240 (1999).

    Article  CAS  Google Scholar 

  7. J. Lutze, G. Scott, and M. Manley, IEEE Electron Device Lett. 21, 155 (2000).

    Article  ADS  CAS  Google Scholar 

  8. J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, IEEE Trans. Electron. Devices 38, 262 (1991).

    Article  ADS  CAS  Google Scholar 

  9. B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, Thin Solids Films 347, 201 (1999).

    Article  ADS  CAS  Google Scholar 

  10. M. C. Poon, C. H. Ho, F. Deng, S. S. Lau, and H. Wong, Microelectron. Reliab. 38, 1495 (1998).

    Article  Google Scholar 

  11. C. Lavoie, F. M. d’Heurle, C. Detavernier, and C. Cabral Jr., Microelectron. Eng. 70, 144 (2003).

    Article  CAS  Google Scholar 

  12. S. H. Cheong, Study on Property and Unit Process of Composite Silicide for Nano-CMOS Devices, p.72–85, University of Seoul, Seoul, Korea (2006).

    Google Scholar 

  13. S. H. Cheong, O. S. Song, M. S. Kim, Metals Mater. Inter., 12, 2 (2006).

    Google Scholar 

  14. D. B. Williams, C. B. Carter, Transmission Electron Microscopy Basics, 1st ed., p.152–170, Plenum Press, New York, U.S.A. (1996).

    Google Scholar 

  15. O. S. Song, S. Y. Kim, J. R. Kim, Kor. Electric. Electron. Mater. Eng., 20, 308 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsung Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, O., Yoon, K. & Kim, S. Characterization of NiCo composite silicides by 10 nm-Ni50Co50 alloy films with additional annealing. Met. Mater. Int. 15, 285–291 (2009). https://doi.org/10.1007/s12540-009-0285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0285-3

Keywords

Navigation