Skip to main content
Log in

Internal oxidation phenomenon in pure copper

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper presents two special kinds of internal oxidation phenomenon that can take place in pure metals containing a high concentration of non-equilibrium defects. These processes are Internal Oxidation (IO) and Internal Carbonisation (IC). Both processes start with the dissolution of oxidant (O or C) into the pure metal at the free surfaces, and continue with the diffusion of oxidant atoms into the metal matrix volume, where they are trapped at numerous defects within the crystal lattice. Increasing oxidant activity at these places causes local oxidation of the matrix and, consequently, precipitation of fine oxide or graphite particles. The IO and IC processes were tested on the rapidly solidified pure copper which was produced by the Chill-Block Melt Spinning Technique. Analysis of the IO process showed the formation of Cu-Cu2O, and the formation of Cu-C composite from the IC process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner, Z. Electrochemie 63, 772 (1959).

    CAS  Google Scholar 

  2. I. Anžel, A. C. Kneissl, and L. Kosec, Z. Met.kd. 8, 621 (1999).

    Google Scholar 

  3. I. Anžel, A. C. Kneissl, and L. Kosec, Z. Met.kd. 8, 630 (1999).

    Google Scholar 

  4. H. J. Grabke and I. Wolf, Mat. Sci. Eng. 87, 23 (1987).

    Article  CAS  Google Scholar 

  5. J. Groza, J. Mater. Eng. Perform. 1, 113 (1992).

    Article  CAS  Google Scholar 

  6. L. Shuhua and F. Zhikang, Acta metall. sinica 12, 782 (1999).

    Google Scholar 

  7. A. C. Ferro, M. P. Caldas, and J. B. Correia, Mater. Sci. Forum 2, 207 (1995).

    Google Scholar 

  8. F. N. Rhines, W. A. Johnson, and W. A. Anderson, Trans. TMS-AIME 147, 205 (1991).

    Google Scholar 

  9. A. Berner, K. C. Mundim, D. E. Ellis, S. Dorfman, D. Fuks, and R. Evenhaim, Sensor. Actuat. A-Phys. 74, 86 (1999).

    Article  Google Scholar 

  10. X. W. Wang, T. Yoshihiro, and M. Terutake, Compos. Part A-Appl. Sci. 39, 231 (2008).

    Article  CAS  Google Scholar 

  11. V. Behrens, E. Mahle, R. Michal and K.R. Saeger, Proc. of the 16 th Int. Conf. on Electrical Contacts, p. 185, Loughborough (1992).

  12. P. K. Lee, IEEE Tran. Components, Hybrids, Manuf. Technol. CHMT-3, 4 (1980).

    CAS  Google Scholar 

  13. W. Krenkel and F. Gern, Proc. of ICCM-9 II, p. 173, Madrid, Spain (1993).

  14. W. Krenkel and J. Fabig, Proc. of ICCM-10 IV, p. 601, Whistler, Canada (1995).

  15. Japanese Patent Number, 2000-081062 (2000).

  16. I. Anžel, A. Križman, T. Bonèina, F. Zupaniè, G. Lojen, L. Kosec, and B. Šuštaršiè, Kovine zlit. tehnol. 29, 57 (1995).

    Google Scholar 

  17. J. Liu, J. Z. Zhao, and Z. Q. Hu, Mat. Sci. Eng. A 452–453, 103 (2007).

    Google Scholar 

  18. L. E. Shterenberg, S. V. Bogdanova, and V. N. Slesarev, Inorganic Materials 13, 1424 (1977).

    CAS  Google Scholar 

  19. B. C. Prorok, K. C. Goretta, J. -H. Park, U. Balachandran, and M. J. McNallan, Physica C 370, 31 (2002).

    Article  ADS  CAS  Google Scholar 

  20. W. H. Gries, B. D. Sawicka, and J. A. Sawcki, Nuclear Instruments and Methods in Physics Research Section B 18, 291 (1986).

    Article  Google Scholar 

  21. A. Ye. Yermakov, M. A. Uimin, A. A. Mysik, V. B. Vykhodets, T. E. Kurennykh, V. I. Sokolov, V. S. Gaviko, N. N. Schegoleva, and N. B. Gruzdev, J. Magn. Magn. Mater. 310, 2102 (2007).

    Article  ADS  CAS  Google Scholar 

  22. L. Guobin, S. Jibing, G. Quanmei, and R. Wang, J. Mater. Process. Tech. 170, 336 (2005).

    Article  Google Scholar 

  23. S. J. Zinkle, W. G. Wolfer, G. L. Kulcinski, and L. E. Seitzman, Phil. Mag. A 55, 127 (1987).

    Article  ADS  CAS  Google Scholar 

  24. S. J. Zinkle and E.H. Lee, Metall. Trans. A 21, 1037 (1990).

    Google Scholar 

  25. R. Rudolf, I. Anžel, V. Laziæ, and D. Stojiæ, Metalurgija 13, 107 (2007).

    CAS  Google Scholar 

  26. E. A. Brandes and G. B. Brook, Smithell’s Metals Reference Handbook, p. 3–4, Butterworth-Heinemann Ltd, London (1992).

    Google Scholar 

  27. J. L. Meijering, Adv. Mater. Res. 5, 1 (1970).

    Google Scholar 

  28. I. Anžel, R. Rudolf, A. Križman, and A. C. Kneissl, Prakt. Metallogr. 39, 401 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeka Rudolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolf, R., Anžel, I. Internal oxidation phenomenon in pure copper. Met. Mater. Int. 15, 259–264 (2009). https://doi.org/10.1007/s12540-009-0259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0259-5

Keywords

Navigation