Skip to main content
Log in

Equilibration of plain carbon and alloy steels with endothermic carburizing atmospheres: Part I. Activity of carbon in plain carbon steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Experimental data on the activity of carbon in commercial plain carbon steel, AISI type 1010, common shim-stock material, at 871 °C, 927 °C, 1000 °C, and 1038 °C, equilibrated with common endothermic carburizing atmospheres, were found to be generally in agreement at relatively high carbon concentrations with previously published data on pure iron equilibrated with CO-CO2 mixtures. However, noticeable differences were found at low carbon concentrations. The carbon contents of type 1010 steel were generally higher compared to those of previously published data regarding pure iron except at very high activities of carbon. The carbon contents of type 1010 steel foil specimens by weight gain were generally higher than or equal to those chemically analyzed; however, they corresponded with each other within 0.02 wt.% except at very low carbon potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Smith, J. Am. Chem. Soc. 68, 1163 (1946).

    Article  CAS  Google Scholar 

  2. R. P. Smith, J. Am. Chem. Soc. 70, 2724 (1948).

    Article  CAS  Google Scholar 

  3. R. P. Smith, Trans. TMS-AIME. 218, 62 (1960).

    CAS  Google Scholar 

  4. H. Scenck and H. Kaiser, Arch. Eisenhuttenwes. 31, 227 (1960).

    Google Scholar 

  5. T. Ellis, I. M. Davidson, and C. Bodsworth, JISI 201, 582 (1963).

    CAS  Google Scholar 

  6. R. P. Smith, Trans. TMS-AIME. 233, 397 (1965).

    CAS  Google Scholar 

  7. E. Schurman, Th. Schimidt, and F. Tillman, Giessereiforch. 19, 25 (1967).

    Google Scholar 

  8. S. Ban-ya, J. F. Elliott, and J. Chipman, Trans. TMS-AIME. 245, 1199 (1969).

    CAS  Google Scholar 

  9. S. Ban-ya, J. F. Elliott, and J. Chipman, Met. Trans. 1, 1313 (1970).

    CAS  Google Scholar 

  10. T. Wada, H. Wada, J. F. Elliott, and J. Chipman, Met. Trans. 2, 2199 (1971).

    CAS  Google Scholar 

  11. T. Wada, H. Wada, J. F. Elliott, and J. Chipman, Met. Trans. 3, 2865 (1972).

    Article  CAS  Google Scholar 

  12. K. Natesan and T. F. Kassner, Metall. Trans. 4, 2557 (1973).

    Article  CAS  Google Scholar 

  13. R. Ramanathan and W. A. Oates, Met. Trans. A 11, 459 (1980).

    Article  Google Scholar 

  14. M. Handa, I. Takahashi, T. Tsukada and T. Iwai. J. Nucl. Mater. 116, 178 (1983).

    Article  ADS  CAS  Google Scholar 

  15. A. N. Conejo and G. P. Martins, ISIJ Int. 37, 967 (1997).

    Article  CAS  Google Scholar 

  16. H. S. Hwang, U. C. Chung, W. S. Chung, Y. R. Cho, B. H. Chung, and G. P. Martin, Met. Mater. Int. 10, 77 (2004).

    Article  CAS  Google Scholar 

  17. F. Neuman and B. Person, Harterei-Techn. Mitt. 23(4), 296 (1968).

    Google Scholar 

  18. M. Przylecka, M. Kulka and W. Gestwa, Materials Science Forum 163–165, 87 (1994).

    Article  Google Scholar 

  19. S. R. Pillai and C. K. Mathews, J. Nucl. Mater. 150, 31 (1987).

    Article  ADS  CAS  Google Scholar 

  20. S. R. Pillai and C. K. Mathews, High Temp.-High Press. 20, 263 (1988).

    CAS  Google Scholar 

  21. R. Collin, S. Gunnarson, and D. Thulin, JISI., 785 (1972).

  22. J. P. Coughlin, Heats and Free Energies of Formation of Inorganic Oxides, Bulletin 542, U.S. Bureau of Mines, 61 (1954).

  23. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5 th ed., p. 378, Pergamon Press (1979).

  24. D. J. Bradley and J. M. Leitnaker, High Temp. Sci. 12, 1 (1980).

    CAS  Google Scholar 

  25. I. Barin, Thermochemical Data of Pure Substances, 3 rd Ed., 403,404,283, VCH, New York (1995).

    Google Scholar 

  26. A. E. Morris, Appendex CD of Introduction to the Thermodynamics of Materials, 4 th ed., written by D. A. Gaskell, Taylor & Francis, New York (2003).

    Google Scholar 

  27. D. R. Stull and H. Prophet, JANAF Thermochemical Tables 2 nd ed., p. CO, NSRDS-NBS 37, U. S. Gov. Prineting Office, Washington, D.C. 20402 (1971).

    Google Scholar 

  28. F. D. Richardson, JISI., 44 (1953).

  29. J. Chipman, Trans. TMS-AIME. 239, 2 (1967).

    CAS  Google Scholar 

  30. L. S. Darken and R. P. Smith, J. Amer. Chem. Soc. 68, 1172 (1946).

    Article  Google Scholar 

  31. J. Chipman, Met. Trans. 3, 55 (1972).

    Article  CAS  Google Scholar 

  32. Metals Handbook”, Vol.4, 9th ed., p. 145, American Society for Metals, Metals Park, Ohio (1980).

  33. T. H. Estell and S. N. Flengas, Met. Trans. 3, 27 (1972).

    Article  Google Scholar 

  34. J. H. Park, Ph.D. Dissertation, p. 104, Marquette Univ., Milwaukee, Wisconsin, USA (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kyu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, JI., Melville, A.T., Jhee, TG. et al. Equilibration of plain carbon and alloy steels with endothermic carburizing atmospheres: Part I. Activity of carbon in plain carbon steels. Met. Mater. Int. 15, 159–173 (2009). https://doi.org/10.1007/s12540-009-0159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0159-8

Keywords

Navigation