Skip to main content
Log in

DOTAD: A Database of Therapeutic Antibody Developability

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The development of therapeutic antibodies is an important aspect of new drug discovery pipelines. The assessment of an antibody's developability—its suitability for large-scale production and therapeutic use—is a particularly important step in this process. Given that experimental assays to assess antibody developability in large scale are expensive and time-consuming, computational methods have been a more efficient alternative. However, the antibody research community faces significant challenges due to the scarcity of readily accessible data on antibody developability, which is essential for training and validating computational models. To address this gap, DOTAD (Database Of Therapeutic Antibody Developability) has been built as the first database dedicated exclusively to the curation of therapeutic antibody developability information. DOTAD aggregates all available therapeutic antibody sequence data along with various developability metrics from the scientific literature, offering researchers a robust platform for data storage, retrieval, exploration, and downloading. In addition to serving as a comprehensive repository, DOTAD enhances its utility by integrating a web-based interface that features state-of-the-art tools for the assessment of antibody developability. This ensures that users not only have access to critical data but also have the convenience of analyzing and interpreting this information. The DOTAD database represents a valuable resource for the scientific community, facilitating the advancement of therapeutic antibody research. It is freely accessible at http://i.uestc.edu.cn/DOTAD/, providing an open data platform that supports the continuous growth and evolution of computational methods in the field of antibody development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buss NA, Henderson SJ, McFarlane M et al (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12:615–622. https://doi.org/10.1016/j.coph.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  2. Smith SL (1996) Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord 6:109–19; quiz 120-1. https://doi.org/10.7182/prtr.1.6.3.8145l3u185493182

    Article  CAS  PubMed  Google Scholar 

  3. Lyu X, Zhao Q, Hui J et al (2022) The global landscape of approved antibody therapies. Antib Ther 5:233–257. https://doi.org/10.1093/abt/tbac021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaplon H, Chenoweth A, Crescioli S et al (2022) Antibodies to watch in 2022. MAbs. https://doi.org/10.1080/19420862.2021.2014296

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elgundi Z, Reslan M, Cruz E et al (2017) The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 122:2–19. https://doi.org/10.1016/j.addr.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  6. Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the “high-hanging fruit.” Nat Rev Drug Discov 17:197–223. https://doi.org/10.1038/nrd.2017.227

    Article  CAS  PubMed  Google Scholar 

  7. Jain T, Sun T, Durand S et al (2017) Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A 114:944–949. https://doi.org/10.1073/pnas.1616408114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmed L, Gupta P, Martin KP et al (2021) Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2020577118

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Caffry I, Wu J et al (2014) High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. MAbs 6:483–492. https://doi.org/10.4161/mabs.27431

    Article  PubMed  Google Scholar 

  10. Gentiluomo L, Svilenov HL, Augustijn D et al (2020) Advancing therapeutic protein discovery and development through comprehensive computational and biophysical characterization. Mol Pharm 17:426–440. https://doi.org/10.1021/acs.molpharmaceut.9b00852

    Article  CAS  PubMed  Google Scholar 

  11. Dobson CL, Devine PW, Phillips JJ et al (2016) Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep 6:38644. https://doi.org/10.1038/srep38644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavoisier A, Schlaeppi JM (2015) Early developability screen of therapeutic antibody candidates using Taylor dispersion analysis and UV area imaging detection. MAbs 7:77–83. https://doi.org/10.4161/19420862.2014.985544

    Article  CAS  PubMed  Google Scholar 

  13. Azevedo Reis Teixeira A, Erasmus MF, D’Angelo S et al (2021) Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs 13:1980942. https://doi.org/10.1080/19420862.2021.1980942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Huang Z, Gou Y et al (2023) AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains. Antib Ther 6:147–156. https://doi.org/10.1093/abt/tbad007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Huang Z, Li W et al (2023) Deep learning in preclinical antibody drug discovery and development. Methods 218:57–71. https://doi.org/10.1016/j.ymeth.2023.07.003

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Xie S, Yang Y et al (2022) SSH2.0: a better tool for predicting the hydrophobic interaction risk of monoclonal antibody. Front Genet 13:842127. https://doi.org/10.3389/fgene.2022.842127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lefranc MP, Lefranc G (2019) IMGT(®) and 30 years of immunoinformatics insight in antibody V and C domain structure and function. Antibodies (Basel). https://doi.org/10.3390/antib8020029

    Article  PubMed  Google Scholar 

  18. Raybould MIJ, Marks C, Lewis AP et al (2019) Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res 48:D383–D388. https://doi.org/10.1093/nar/gkz827

    Article  CAS  PubMed Central  Google Scholar 

  19. Jain T, Boland T, Vásquez M (2023) Identifying developability risks for clinical progression of antibodies using high-throughput in vitro and in silico approaches. MAbs 15:2200540. https://doi.org/10.1080/19420862.2023.2200540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dzisoo AM, Kang J, Yao P et al (2020) SSH: a tool for predicting hydrophobic interaction of monoclonal antibodies using sequences. Biomed Res Int 2020:3508107. https://doi.org/10.1155/2020/3508107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nelson PN, Reynolds GM, Waldron EE et al (2000) Monoclonal antibodies. Mol Pathol 53:111–117. https://doi.org/10.1136/mp.53.3.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scott LJ (2017) Tocilizumab: a review in rheumatoid arthritis. Drugs 77:1865–1879. https://doi.org/10.1007/s40265-017-0829-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grieshaber-Bouyer R, Lorenz HM (2020) Biosimilars: opportunities and risks. Internist (Berl) 61:522–529. https://doi.org/10.1007/s00108-020-00784-2

    Article  CAS  PubMed  Google Scholar 

  24. Lu X, Hu R, Peng L et al (2021) Efficacy and safety of adalimumab biosimilars: current critical clinical data in rheumatoid arthritis. Front Immunol 12:638444. https://doi.org/10.3389/fimmu.2021.638444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ducancel F, Muller BH (2012) Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs 4:445–457. https://doi.org/10.4161/mabs.20776

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41-52. https://doi.org/10.1016/j.jaci.2009.09.046

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vukovic N, van Elsas A, Verbeek JS et al (2021) Isotype selection for antibody-based cancer therapy. Clin Exp Immunol 203:351–365. https://doi.org/10.1111/cei.13545

    Article  CAS  PubMed  Google Scholar 

  28. Stanfield RL, Zemla A, Wilson IA et al (2006) Antibody elbow angles are influenced by their light chain class. J Mol Biol 357:1566–1574. https://doi.org/10.1016/j.jmb.2006.01.023

    Article  CAS  PubMed  Google Scholar 

  29. Bailey LJ, Sheehy KM, Dominik PK et al (2018) Locking the elbow: improved antibody fab fragments as chaperones for structure determination. J Mol Biol 430:337–347. https://doi.org/10.1016/j.jmb.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  30. Bailly M, Mieczkowski C, Juan V et al (2020) Predicting antibody developability profiles through early stage discovery screening. MAbs 12:1743053. https://doi.org/10.1080/19420862.2020.1743053

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hebditch M, Warwicker J (2019) Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ 7:e8199. https://doi.org/10.7717/peerj.8199

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sule SV, Sukumar M, Weiss WFT et al (2011) High-throughput analysis of concentration-dependent antibody self-association. Biophys J 101:1749–1757. https://doi.org/10.1016/j.bpj.2011.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Estep P, Caffry I, Yu Y et al (2015) An alternative assay to hydrophobic interaction chromatography for high-throughput characterization of monoclonal antibodies. MAbs 7:553–561. https://doi.org/10.1080/19420862.2015.1016694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mouquet H, Scheid JF, Zoller MJ et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595. https://doi.org/10.1038/nature09385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hötzel I, Theil FP, Bernstein LJ et al (2012) A strategy for risk mitigation of antibodies with fast clearance. MAbs 4:753–760. https://doi.org/10.4161/mabs.22189

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dietlin-Auril V, Lecerf M, Depinay S et al (2021) Interaction with 2,4-dinitrophenol correlates with polyreactivity, self-binding, and stability of clinical-stage therapeutic antibodies. Mol Immunol 140:233–239. https://doi.org/10.1016/j.molimm.2021.10.019

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor BF, Cummins PM (2017) Hydrophobic interaction chromatography. Methods Mol Biol 1485:355–363. https://doi.org/10.1007/978-1-4939-6412-3_18

    Article  CAS  PubMed  Google Scholar 

  38. Kohli N, Jain N, Geddie ML et al (2015) A novel screening method to assess developability of antibody-like molecules. MAbs 7:752–758. https://doi.org/10.1080/19420862.2015.1048410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ravuluri S, Bansal R, Chhabra N et al (2018) Kinetics and characterization of non-enzymatic fragmentation of monoclonal antibody therapeutics. Pharm Res 35:142. https://doi.org/10.1007/s11095-018-2415-4

    Article  CAS  PubMed  Google Scholar 

  40. Xu Y, Roach W, Sun T et al (2013) Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 26:663–670. https://doi.org/10.1093/protein/gzt047

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs SA, Wu SJ, Feng Y et al (2010) Cross-interaction chromatography: a rapid method to identify highly soluble monoclonal antibody candidates. Pharm Res 27:65–71. https://doi.org/10.1007/s11095-009-0007-z

    Article  CAS  PubMed  Google Scholar 

  42. Sun T, Reid F, Liu Y et al (2013) High throughput detection of antibody self-interaction by bio-layer interferometry. MAbs 5:838–841. https://doi.org/10.4161/mabs.26186

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kraft TE, Richter WF, Emrich T et al (2020) Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. MAbs 12:1683432. https://doi.org/10.1080/19420862.2019.1683432

    Article  CAS  PubMed  Google Scholar 

  44. Lecerf M, Kanyavuz A, Rossini S et al (2021) Interaction of clinical-stage antibodies with heme predicts their physiochemical and binding qualities. Commun Biol 4:391. https://doi.org/10.1038/s42003-021-01931-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jain T, Boland T, Lilov A et al (2017) Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 33:3758–3766. https://doi.org/10.1093/bioinformatics/btx519

    Article  CAS  PubMed  Google Scholar 

  46. Sharma VK, Patapoff TW, Kabakoff B et al (2014) In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci U S A 111:18601–18606. https://doi.org/10.1073/pnas.1421779112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tomar DS, Li L, Broulidakis MP et al (2017) In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs 9:476–489. https://doi.org/10.1080/19420862.2017.1285479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lai PK, Fernando A, Cloutier TK et al (2021) Machine learning applied to determine the molecular descriptors responsible for the viscosity behavior of concentrated therapeutic antibodies. Mol Pharm 18:1167–1175. https://doi.org/10.1021/acs.molpharmaceut.0c01073

    Article  CAS  PubMed  Google Scholar 

  49. Lai PK (2022) DeepSCM: an efficient convolutional neural network surrogate model for the screening of therapeutic antibody viscosity. Comput Struct Biotechnol J 20:2143–2152. https://doi.org/10.1016/j.csbj.2022.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lai PK, Gallegos A, Mody N et al (2022) Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics. MAbs 14:2026208. https://doi.org/10.1080/19420862.2022.2026208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmitt J, Razvi A, Grapentin C (2023) Predictive modeling of concentration-dependent viscosity behavior of monoclonal antibody solutions using artificial neural networks. MAbs 15:2169440. https://doi.org/10.1080/19420862.2023.2169440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Magnan CN, Randall A, Baldi P (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25:2200–2207. https://doi.org/10.1093/bioinformatics/btp386

    Article  CAS  PubMed  Google Scholar 

  53. Smialowski P, Doose G, Torkler P et al (2012) PROSO II—a new method for protein solubility prediction. FEBS J 279:2192–2200. https://doi.org/10.1111/j.1742-4658.2012.08603.x

    Article  CAS  PubMed  Google Scholar 

  54. Hebditch M, Carballo-Amador MA, Charonis S et al (2017) Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33:3098–3100. https://doi.org/10.1093/bioinformatics/btx345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rawi R, Mall R, Kunji K et al (2018) PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine. Bioinformatics 34:1092–1098. https://doi.org/10.1093/bioinformatics/btx662

    Article  CAS  PubMed  Google Scholar 

  56. Khurana S, Rawi R, Kunji K et al (2018) DeepSol: a deep learning framework for sequence-based protein solubility prediction. Bioinformatics 34:2605–2613. https://doi.org/10.1093/bioinformatics/bty166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raimondi D, Orlando G, Fariselli P et al (2020) Insight into the protein solubility driving forces with neural attention. PLoS Comput Biol 16:e1007722. https://doi.org/10.1371/journal.pcbi.1007722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hou Q, Kwasigroch JM, Rooman M et al (2020) SOLart: a structure-based method to predict protein solubility and aggregation. Bioinformatics 36:1445–1452. https://doi.org/10.1093/bioinformatics/btz773

    Article  CAS  PubMed  Google Scholar 

  59. Wu X, Yu L (2021) EPSOL: sequence-based protein solubility prediction using multidimensional embedding. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab463

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hon J, Marusiak M, Martinek T et al (2021) SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37:23–28. https://doi.org/10.1093/bioinformatics/btaa1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thumuluri V, Martiny HM, Armenteros JJA et al (2021) NetSolP: predicting protein solubility in E. coli using language models. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab801

    Article  Google Scholar 

  62. Han X, Shih J, Lin Y et al (2022) Development of QSAR models for in silico screening of antibody solubility. MAbs 14:2062807. https://doi.org/10.1080/19420862.2022.2062807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feng J, Jiang M, Shih J et al (2022) Antibody apparent solubility prediction from sequence by transfer learning. iScience 25:105173. https://doi.org/10.1016/j.isci.2022.105173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim C, Choi J, Lee SJ et al (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37:W469–W473. https://doi.org/10.1093/nar/gkp351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emily M, Talvas A, Delamarche C (2013) MetAmyl: a METa-predictor for AMYLoid proteins. PLoS ONE 8:e79722. https://doi.org/10.1371/journal.pone.0079722

    Article  PubMed  PubMed Central  Google Scholar 

  66. Thangakani AM, Kumar S, Nagarajan R et al (2014) GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics 30:1983–1990. https://doi.org/10.1093/bioinformatics/btu167

    Article  CAS  PubMed  Google Scholar 

  67. Família C, Dennison SR, Quintas A et al (2015) Prediction of peptide and protein propensity for amyloid formation. PLoS ONE 10:e0134679. https://doi.org/10.1371/journal.pone.0134679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burdukiewicz M, Sobczyk P, Rödiger S et al (2017) Amyloidogenic motifs revealed by n-gram analysis. Sci Rep 7:12961. https://doi.org/10.1038/s41598-017-13210-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Niu M, Li Y, Wang C et al (2018) RFAmyloid: a web server for predicting amyloid proteins. Int J Mol Sci. https://doi.org/10.3390/ijms19072071

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wojciechowski JW, Kotulska M (2020) PATH—prediction of amyloidogenicity by threading and machine learning. Sci Rep 10:7721. https://doi.org/10.1038/s41598-020-64270-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gentiluomo L, Roessner D, Frieß W (2020) Application of machine learning to predict monomer retention of therapeutic proteins after long term storage. Int J Pharm 577:119039. https://doi.org/10.1016/j.ijpharm.2020.119039

    Article  CAS  PubMed  Google Scholar 

  72. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48. https://doi.org/10.1002/prot.21078

    Article  CAS  PubMed  Google Scholar 

  73. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255. https://doi.org/10.1002/jmr.893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22:113–120. https://doi.org/10.1093/protein/gzn075

    Article  CAS  PubMed  Google Scholar 

  75. Magnan CN, Zeller M, Kayala MA et al (2010) High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26:2936–2943. https://doi.org/10.1093/bioinformatics/btq551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Singh H, Ansari HR, Raghava GP (2013) Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS ONE 8:e62216. https://doi.org/10.1371/journal.pone.0062216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jespersen MC, Peters B, Nielsen M et al (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. https://doi.org/10.1093/nar/gkx346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ansari HR, Raghava GP (2010) Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res 6:6. https://doi.org/10.1186/1745-7580-6-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wollacott AM, Xue C, Qin Q et al (2019) Quantifying the nativeness of antibody sequences using long short-term memory networks. Protein Eng Des Sel 32:347–354. https://doi.org/10.1093/protein/gzz031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yao B, Zheng D, Liang S et al (2020) SVMTriP: a method to predict B-cell linear antigenic epitopes. Methods Mol Biol 2131:299–307. https://doi.org/10.1007/978-1-0716-0389-5_17

    Article  PubMed  Google Scholar 

  81. Reynisson B, Alvarez B, Paul S et al (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48:W449–W454. https://doi.org/10.1093/nar/gkaa379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prihoda D, Maamary J, Waight A et al (2022) BioPhi: a platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. MAbs 14:2020203. https://doi.org/10.1080/19420862.2021.2020203

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marks C, Hummer AM, Chin M et al (2021) Humanization of antibodies using a machine learning approach on large-scale repertoire data. Bioinformatics 37:4041–4047. https://doi.org/10.1093/bioinformatics/btab434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olenyi T, Marquet C, Heinzinger M et al (2023) LambdaPP: fast and accessible protein-specific phenotype predictions. Protein Sci 32:e4524. https://doi.org/10.1002/pro.4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang ZR (2009) Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy. BMC Bioinform 10:361. https://doi.org/10.1186/1471-2105-10-361

    Article  CAS  Google Scholar 

  86. Gao J, Thelen JJ, Dunker AK et al (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9:2586–2600. https://doi.org/10.1074/mcp.M110.001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang SY, Shi SP, Qiu JD et al (2012) PredSulSite: prediction of protein tyrosine sulfation sites with multiple features and analysis. Anal Biochem 428:16–23. https://doi.org/10.1016/j.ab.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  88. Chauhan JS, Rao A, Raghava GP (2013) In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS ONE 8:e67008. https://doi.org/10.1371/journal.pone.0067008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sydow JF, Lipsmeier F, Larraillet V et al (2014) Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS ONE 9:e100736. https://doi.org/10.1371/journal.pone.0100736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lv H, Han J, Liu J et al (2014) CarSPred: a computational tool for predicting carbonylation sites of human proteins. PLoS ONE 9:e111478. https://doi.org/10.1371/journal.pone.0111478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jia J, Liu Z, Xiao X et al (2016) iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 7:34558–70. https://doi.org/10.18632/oncotarget.9148

  92. Yan Q, Huang M, Lewis MJ et al (2018) Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs 10:901–912. https://doi.org/10.1080/19420862.2018.1478646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo F, Wang M, Liu Y et al (2019) DeepPhos: prediction of protein phosphorylation sites with deep learning. Bioinformatics 35:2766–2773. https://doi.org/10.1093/bioinformatics/bty1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Delmar JA, Wang J, Choi SW et al (2019) Machine learning enables accurate prediction of asparagine deamidation probability and rate. Mol Ther Methods Clin Dev 15:264–274. https://doi.org/10.1016/j.omtm.2019.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang D, Liu D, Yuchi J et al (2020) MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res 48:W140–W146. https://doi.org/10.1093/nar/gkaa275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang D, Xu Z-C, Su W et al (2020) iCarPS: a computational tool for identifying protein carbonylation sites by novel encoded features. Bioinformatics 37:171–177. https://doi.org/10.1093/bioinformatics/btaa702

    Article  CAS  Google Scholar 

  97. Dehzangi I, Sharma A, Shatabda S (2022) iProtGly-SS: a tool to accurately predict protein glycation site using structural-based features. Methods Mol Biol 2499:125–134. https://doi.org/10.1007/978-1-0716-2317-6_5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grant from the National Natural Science Foundation of China (62071099, 62371112 ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangCheng Xiang or Jian Huang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest, financial or otherwise.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lin, H., Huang, Z. et al. DOTAD: A Database of Therapeutic Antibody Developability. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00613-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00613-2

Keywords

Navigation