Skip to main content
Log in

CHL-DTI: A Novel High–Low Order Information Convergence Framework for Effective Drug–Target Interaction Prediction

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Recognizing drug–target interactions (DTI) stands as a pivotal element in the expansive field of drug discovery. Traditional biological wet experiments, although valuable, are time-consuming and costly as methods. Recently, computational methods grounded in network learning have demonstrated great advantages by effective topological feature extraction and attracted extensive research attention. However, most existing network-based learning methods only consider the low-order binary correlation between individual drug and target, neglecting the potential higher-order correlation information derived from multiple drugs and targets. High-order information, as an essential component, exhibits complementarity with low-order information. Hence, the incorporation of higher-order associations between drugs and targets, while adequately integrating them with the existing lower-order information, could potentially yield substantial breakthroughs in predicting drug–target interactions. We propose a novel dual channels network-based learning model CHL-DTI that converges high-order information from hypergraphs and low-order information from ordinary graph for drug–target interaction prediction. The convergence of high–low order information in CHL-DTI is manifested in two key aspects. First, during the feature extraction stage, the model integrates both high-level semantic information and low-level topological information by combining hypergraphs and ordinary graph. Second, CHL-DTI fully fuse the innovative introduced drug–protein pairs (DPP) hypergraph network structure with ordinary topological network structure information. Extensive experimentation conducted on three public datasets showcases the superior performance of CHL-DTI in DTI prediction tasks when compared to SOTA methods. The source code of CHL-DTI is available at https://github.com/UPCLyy/CHL-DTI.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The source code and data are available at https://github.com/UPCLyy/CHL-DTI.

References

  1. Yang F, Zhang Q, Ji X et al (2022) Machine learning applications in drug repurposing. Interdiscip Sci 14(1):15–21. https://doi.org/10.1007/s12539-021-00487-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kale MA, Shamkuwar PB, Mourya VK et al (2022) Drug repositioning: a unique approach to refurbish drug discovery. Curr Drug Discov Technol 19(1):e140122192307. https://doi.org/10.2174/1570163818666210316114331

    Article  CAS  PubMed  Google Scholar 

  3. Ye Q, Hsieh CY, Yang Z et al (2021) A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun 12(1):6775. https://doi.org/10.1038/s41467-021-27137-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee H, Lee JW (2016) Target identification for biologically active small molecules using chemical biology approaches. Arch Pharm Res 39(9):1193–1201. https://doi.org/10.1007/s12272-016-0791-z

    Article  CAS  PubMed  Google Scholar 

  5. Schirle M, Jenkins JL (2016) Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today 21(1):82–89. https://doi.org/10.1016/j.drudis.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  6. Zheng J, Xiao X, Qiu WR (2022) DTI-BERT: identifying drug-target interactions in cellular networking based on BERT and deep learning method. Front Genet 13:859188. https://doi.org/10.3389/fgene.2022.859188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang X, Wu F, Yang N et al (2022) In silico methods for identification of potential therapeutic targets. Interdiscip Sci 14(2):285–310. https://doi.org/10.1007/s12539-021-00491-y

    Article  ADS  PubMed  Google Scholar 

  8. Ma D, Li S, Chen Z (2023) Drug-target binding affinity prediction method based on a deep graph neural network. Math Biosci Eng 20(1):269–282. https://doi.org/10.3934/mbe.2023012

    Article  PubMed  Google Scholar 

  9. Wang J, Wang W, Yan C et al (2021) Predicting drug-disease association based on ensemble strategy. Front Genet 12:666575. https://doi.org/10.3389/fgene.2021.666575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206. https://doi.org/10.1038/nbt1284

    Article  CAS  PubMed  Google Scholar 

  12. Sachdev K, Gupta MK (2019) A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 93:103159. https://doi.org/10.1016/j.jbi.2019.103159

    Article  PubMed  Google Scholar 

  13. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18):2397–2403. https://doi.org/10.1093/bioinformatics/btp433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mei JP, Kwoh CK, Yang P et al (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2):238–245. https://doi.org/10.1093/bioinformatics/bts670

    Article  CAS  PubMed  Google Scholar 

  15. Zheng X, Ding H, Mamitsuka H et al (2013) Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '13), pp 1025–1033. https://doi.org/10.1145/2487575.2487670

  16. Wu Z, Li W, Liu G et al (2018) Network-based methods for prediction of drug-target interactions. Front Pharmacol 9:1134. https://doi.org/10.3389/fphar.2018.01134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Y, Zhao X, Zhou J et al (2017) A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 8(1):573. https://doi.org/10.1038/s41467-017-00680-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wan F, Hong L, Xiao A et al (2019) NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 35(1):104–111. https://doi.org/10.1093/bioinformatics/bty543

    Article  CAS  PubMed  Google Scholar 

  19. Zhao T, Hu Y, Valsdottir LR et al (2021) Identifying drug-target interactions based on graph convolutional network and deep neural network. Brief Bioinform 22(2):2141–2150. https://doi.org/10.1093/bib/bbaa044

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Wang J, Lv H et al (2022) IMCHGAN: inductive matrix completion with heterogeneous graph attention networks for drug-target interactions prediction. IEEE/ACM Trans Comput Biol Bioinform 19(2):655–665. https://doi.org/10.1109/tcbb.2021.3088614

    Article  CAS  PubMed  Google Scholar 

  21. Peng J, Wang Y, Guan J et al (2021) An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction. Brief Bioinform 22(5):bbaa430. https://doi.org/10.1093/bib/bbaa430

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  22. Jiang L, Sun J, Wang Y et al (2022) Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities. Brief Bioinform 23(2):bbac016. https://doi.org/10.1093/bib/bbac016

    Article  CAS  PubMed  Google Scholar 

  23. D’Souza S, Prema KV, Balaji S (2020) Machine learning models for drug-target interactions: current knowledge and future directions. Drug Discov Today 25(4):748–756. https://doi.org/10.1016/j.drudis.2020.03.003

    Article  CAS  PubMed  Google Scholar 

  24. Škrlj B, Eržen N, Lavrač N et al (2021) CaNDis: a web server for investigation of causal relationships between diseases, drugs and drug targets. Bioinformatics 37(6):885–887. https://doi.org/10.1093/bioinformatics/btaa762

    Article  CAS  PubMed  Google Scholar 

  25. Gao Y, Zhang Z, Lin H et al (2022) hypergraph learning: methods and practices. IEEE Trans Pattern Anal Mach Intell 44(5):2548–2566. https://doi.org/10.1109/tpami.2020.3039374

    Article  PubMed  Google Scholar 

  26. Cui S, Li Q, Li D et al (2023) Hyper-mol: molecular representation learning via fingerprint-based hypergraph. Comput Intell Neurosci 2023:3756102. https://doi.org/10.1155/2023/3756102

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pang S, Zhang K, Wang S et al (2021) HGDD: A Drug-Disease High-Order Association Information Extraction Method for Drug Repurposing via Hypergraph. In: International Symposium on Bioinformatics Research and Applications, pp 424–435. https://doi.org/10.1007/978-3-030-91415-8_36

  28. Li Y, Qiao G, Wang K et al (2022) Drug-target interaction predication via multi-channel graph neural networks. Brief Bioinform 23(1):bbab346. https://doi.org/10.1093/bib/bbab346

    Article  PubMed  Google Scholar 

  29. Yamanishi Y, Kotera M, Kanehisa M et al (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12):i246–i254. https://doi.org/10.1093/bioinformatics/btq176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng Y, Peng H, Zhang X et al (2018) Predicting drug targets from heterogeneous spaces using anchor graph hashing and ensemble learning. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp 1–7. https://doi.org/10.1109/IJCNN.2018.8489028

  31. Feng Y, You H, Zhang Z et al (2019) Hypergraph neural networks. In: Proceedings of the AAAI conference on artificial intelligence 33(01):3558–3565. https://doi.org/10.1609/aaai.v33i01.33013558

  32. Ruan D, Ji S, Yan C et al (2021) Exploring complex and heterogeneous correlations on hypergraph for the prediction of drug-target interactions. Patterns 2(12):100390. https://doi.org/10.1016/j.patter.2021.100390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Qiao G, Gao X et al (2022) Supervised graph co-contrastive learning for drug–target interaction prediction. Bioinformatics 38(10):2847–2854. https://doi.org/10.1093/bioinformatics/btac164

    Article  CAS  PubMed  Google Scholar 

  34. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041. https://doi.org/10.1093/nar/gkq1126

    Article  CAS  PubMed  Google Scholar 

  35. Babiker T, Vedovato N, Patel K et al (2016) Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia 59(6):1162–1166. https://doi.org/10.1007/s00125-016-3921-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pacanowski MA, Gong Y, Cooper-Dehoff RM et al (2008) beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension. Clin Pharmacol Ther 84(6):715–721. https://doi.org/10.1038/clpt.2008.139

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Key Research and Development Project of China, 2021YFA1000102, National Natural Science Foundation of China, 61902430, Yuanyuan Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, Y., Zhang, Y. et al. CHL-DTI: A Novel High–Low Order Information Convergence Framework for Effective Drug–Target Interaction Prediction. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00608-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00608-z

Keywords

Navigation