Skip to main content
Log in

TP-DDI: A Two-Pathway Deep Neural Network for Drug–Drug Interaction Prediction

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Adverse drug–drug interactions (DDIs) can severely damage the body. Thus, it is essential to accurately predict DDIs. DDIs are complex processes in which many factors can cause interactions. Rather than merely considering one or two of the factors, we design a two-pathway drug–drug interaction framework named TP-DDI that uses multimodal data for DDI prediction. TP-DDI effectively explores the combined effect of a topological structure-based pathway and a biomedical object similarity-based pathway to obtain multimodal drug representations. For the topology-based pathway, we focus on drug chemistry structures through the self-attention mechanism, which can capture hidden critical relationships, especially between pairs of atoms at remote topological distances. For the similarity-based pathway, our model can emphasize useful biomedical objects according to the channel weights. Finally, the fusion of multimodal data provides a holistic view of DDIs by learning the complementary features. On a real-world dataset, experiments show that TP-DDI can achieve better performance than the state-of-the-art models. Moreover, we can find the most critical substructures with certain interpretability in the newly predicted DDIs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han K, Jeng EE, Hess GT et al (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 35:463–474. https://doi.org/10.1038/nbt.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tatonetti NP, Ye PP, Daneshjou R, Altman RB (2012) Data-driven prediction of drug effects and interactions. Sci Transl Med 4(125):125ra31. https://doi.org/10.1126/scitranslmed.3003377

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nagai N (2010) Drug interaction studies on new drug applications: current situations and regulatory views in Japan. Drug Metab Pharmacokinet 25:3–15. https://doi.org/10.2133/dmpk.25.3

    Article  CAS  PubMed  Google Scholar 

  4. Niklas Norén G, Sundberg R, Bate A, Edwards IR (2010) A statistical methodology for drug–drug interaction surveillance. Stat Med 27:3057–3070. https://doi.org/10.1002/sim.3247

    Article  Google Scholar 

  5. Xu B, Shi X, Zhao Z et al (2018) Full-attention based drug drug interaction extraction exploiting user-generated content. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 560–565. https://doi.org/10.1109/BIBM.2018.8621281

  6. Jiang Z, Gu L, Jiang Q (2017) Drug drug interaction extraction from literature using a skeleton long short term memory neural network. In: 2017 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 552–555. https://doi.org/10.1109/BIBM.2017.8217708

  7. Duke JD, Xu H, Zhiping W et al (2012) Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol 8:e1002614. https://doi.org/10.1371/journal.pcbi.1002614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pathak J, Kiefer RC, Chute CG (2013) Using linked data for mining drug–drug interactions in electronic health records. Stud Health Technol Inform 192:682–686. https://doi.org/10.3233/978-1-61499-289-9-682

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tatonetti NP, Denny JC, Murphy SN et al (2011) Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther 90(1):133–142. https://doi.org/10.1038/clpt.2011.83

    Article  CAS  PubMed  Google Scholar 

  10. Lu Y, Shen D, Pietsch M et al (2015) A novel algorithm for analyzing drug-drug interactions from MEDLINE literature. Sci Rep 5:17357. https://doi.org/10.1038/srep17357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Linna H, Zhihao Y, Zhehuan Z et al (2013) Extracting drug–drug interaction from the biomedical literature using a stacked generalization-based approach. PLoS ONE 8(6):e65814. https://doi.org/10.1371/journal.pone.0065814

    Article  CAS  Google Scholar 

  12. Park C, Park J, Park S (2020) AGCN: attention-based graph convolutional networks for drug–drug interaction extraction. Expert Syst Appl 159:113538. https://doi.org/10.1016/j.eswa.2020.113538

    Article  Google Scholar 

  13. Zheng W, Lin H, Luo L et al (2017) An attention-based effective neural model for drug–drug interactions extraction. BMC Bioinform 18:445. https://doi.org/10.1186/s12859-017-1855-x

    Article  Google Scholar 

  14. Vilar S, Harpaz R et al (2012) Drug–drug interaction through molecular structure similarity analysis. J Am Med Inform Assoc 19(6):1066–1074. https://doi.org/10.1136/amiajnl-2012-000935

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee G, Park C, Ahn J (2019) Novel deep learning model for more accurate prediction of drug–drug interaction effects. BMC Bioinform 20(1):415. https://doi.org/10.1186/s12859-019-3013-0

    Article  Google Scholar 

  16. Rohani N, Eslahchi C (2019) Drug–drug interaction predicting by neural network using integrated similarity. Sci Rep 9:13645. https://doi.org/10.1038/s41598-019-50121-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deng Y, Xu X, Qiu Y et al (2020) A multimodal deep learning framework for predicting drug–drug interaction events. Bioinformatics 36:4316–4322. https://doi.org/10.1093/bioinformatics/btaa501

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz K, Allam A, Gonzalez N, Krauthammer M (2020) AttentionDDI: siamese attention-based deep learning method for drug–drug interaction predictions. BMC Bioinform 22(1):412. https://doi.org/10.1186/s12859-021-04325-y

    Article  Google Scholar 

  19. Fokoue A, Sadoghi M, Hassanzadeh O, Zhang P (2016) Predicting drug–drug interactions through large-scale similarity-based link prediction. Latest Adv New Domains 9678:774–789. https://doi.org/10.1007/978-3-319-34129-3_47

    Article  Google Scholar 

  20. Park K, Kim D, Ha S, Lee D (2015) Predicting pharmacodynamic drug–drug interactions through signaling propagation interference on protein–protein interaction networks. PLoS ONE 10(10):e0140816. https://doi.org/10.1371/journal.pone.0140816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. https://arxiv.org/abs/1609.02907v4

  22. Shi L, Zhang Y, Cheng J, Lu H (2019) Action recognition via pose-based graph convolutional networks with intermediate dense supervision. Pattern Recognit 121:108170. https://doi.org/10.1016/j.patcog.2021.108170

    Article  Google Scholar 

  23. Hao Z, Lu C, Huang Z et al (2020) ASGN: an active semi-supervised graph neural network for molecular property prediction. ACM. https://doi.org/10.1145/3394486.3403117

    Article  Google Scholar 

  24. Sun B, Zhang H, Wu Z et al (2021) Adaptive spatiotemporal graph convolutional networks for motor imagery classification. IEEE Signal Process Lett. https://doi.org/10.1109/LSP.2021.3049683

    Article  Google Scholar 

  25. Xia H, Gao X (2021) Multi-scale mixed dense graph convolution network for skeleton-based action recognition. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3049029

    Article  Google Scholar 

  26. Marinka Z, Monica A, Jure L (2018) Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13):i457–i466. https://doi.org/10.1093/bioinformatics/bty294

    Article  CAS  Google Scholar 

  27. Feng Y-H, Zhang S-W, Shi J-Y (2022) DPDDI: a deep predictor for drug–drug interactions. BMC Bioinform 21(1):419. https://doi.org/10.1186/s12859-020-03724-x

    Article  Google Scholar 

  28. Zhong Y, Chen X, Zhao Y et al (2019) Graph-augmented convolutional networks on drug–drug interactions prediction. https://arxiv.org/abs/1912.03702

  29. Wang H, Lian D, Zhang Y et al (2020) GoGNN: graph of graphs neural network for predicting structured entity interactions. Proceedings of the Twenty-Ninth international joint conference on artificial intelligence,  pp 1317–1323.  https://doi.org/10.24963/ijcai.2020/183

  30. Nyamabo AK, Yu H, Shi JY (2021) SSI-DDI: substructure–substructure interactions for drug-drug interaction prediction. Brief Bioinform 22(6):133. https://doi.org/10.1093/bib/bbab133

    Article  CAS  Google Scholar 

  31. Zhang W, Chen Y, Liu F et al (2017) Predicting potential drug–drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform 18:18. https://doi.org/10.1186/s12859-016-1415-9

    Article  CAS  Google Scholar 

  32. Yanli W, Jewen X, Suzek TO et al (2019) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633. https://doi.org/10.1093/nar/gkp456

    Article  CAS  Google Scholar 

  33. Defferrard M, Bresson X, Vandergheynst P (2017) Convolutional neural networks on graphs with fast localized spectral filtering. https://arxiv.org/abs/1606.09375

  34. Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? https://arxiv.org/abs/1810.00826

  35. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J et al (2015) Convolutional networks on graphs for learning molecular fingerprints. https://arxiv.org/abs/1606.09375

  36. Coley CW, Barzilay R, Green WH et al (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57(8):1757–1772. https://doi.org/10.1021/acs.jcim.6b00601

    Article  CAS  PubMed  Google Scholar 

  37. Yang ZY, Yang ZJ, Dong J et al (2019) Structural analysis and identification of colloidal aggregators in drug discovery. J Chem Inf Model 59(9):3714–3726. https://doi.org/10.1021/acs.jcim.9b00541

    Article  CAS  PubMed  Google Scholar 

  38. Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. https://arxiv.org/abs/1706.03762

  39. Jie H, Li S, Gang S, Albanie S (2017) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  40. Gong L, Jiang S, Yang Z et al (2019) Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Int J Comput Assist Radiol Surg 14(1):1969–1979. https://doi.org/10.1007/s11548-019-01979-1

    Article  PubMed  Google Scholar 

  41. Sailor HB, Deena S, Jalal MA et al (2019) Unsupervised adaptation of acoustic models for ASR using utterance-level embeddings from squeeze and excitation networks. In: 2019 IEEE automatic speech recognition and understanding workshop (ASRU), pp 980–987. https://doi.org/10.1109/ASRU46091.2019.9003755

  42. Bodapati JD, Shareef SN, Naralasetti V, Mundukur NB (2021) MSENet: multi-modal squeeze-and-excitation network for brain tumor severity prediction. Int J Pattern Recognit Artif Intell 35(7):2157005. https://doi.org/10.1142/S0218001421570056

    Article  Google Scholar 

  43. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  44. Amy SY, Hao MH, Vaishali D, Lai WG (2018) Celecoxib is a substrate of CYP2D6: impact on celecoxib metabolism in individuals with CYP2C9*3 variants. Drug Metab Pharmacokinet 33:S1347436718300600. https://doi.org/10.1016/j.dmpk.2018.06.001

  45. Hisaka A, Ohno Y, Yamamoto T, Suzuki H (2010) Prediction of pharmacokinetic drug–drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther 125:230–248. https://doi.org/10.1016/j.pharmthera.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  46. Amin SA, Adhikari N, Jha T (2018) Structure–activity relationships of HDAC8 inhibitors: non-hydroxamates as anticancer agents. Pharmacol Res. https://doi.org/10.1016/j.phrs.2018.03.001

    Article  PubMed  Google Scholar 

  47. Bermúdez-Lugo JA, Perez-Gonzalez O, Rosales-Hernández MC et al (2012) Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. J Mol Model 18:2301–2310. https://doi.org/10.1007/s00894-011-1240-z

    Article  CAS  PubMed  Google Scholar 

  48. Wang AH, Wei L, Chen L et al (2011) Synergistic effect of bortezomib and valproic acid treatment on the proliferation and apoptosis of acute myeloid leukemia and myelodysplastic syndrome cells. Ann Hematol 90:917–931. https://doi.org/10.1007/s00277-011-1175-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere acknowledgements to the anonymous reviewers and all authors of the cited references.

Funding

This work was supported by the National Natural Science Foundation of China (no. 61873156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Wang or Wenjun Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhao, C., Ouyang, J. et al. TP-DDI: A Two-Pathway Deep Neural Network for Drug–Drug Interaction Prediction. Interdiscip Sci Comput Life Sci 14, 895–905 (2022). https://doi.org/10.1007/s12539-022-00524-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00524-0

Keywords

Navigation