Skip to main content

Advertisement

Log in

Improving the Prediction of Potential Kinase Inhibitors with Feature Learning on Multisource Knowledge

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Purpose

The identification of potential kinase inhibitors plays a key role in drug discovery for treating human diseases. Currently, most existing computational methods only extract limited features such as sequence information from kinases and inhibitors. To further enhance the identification of kinase inhibitors, more features need to be leveraged. Hence, it is appealing to develop effective methods to aggregate feature information from multisource knowledge for predicting potential kinase inhibitors. In this paper, we propose a novel computational framework called FLMTS to improve the performance of kinase inhibitor prediction by aggregating multisource knowledge.

Method

FLMTS uses a random walk with restart (RWR) to combine multiscale information in a heterogeneous network. We used the combined information as features of compounds and kinases and input them into random forest (RF) to predict unknown compound–kinase interactions.

Results

Experimental results reveal that FLMTS obtains significant improvement over existing state-of-the-art methods. Case studies demonstrated the reliability of FLMTS, and pathway enrichment analysis demonstrated that FLMTS could also accurately predict signaling pathways in disease treatment.

Conclusion

In conclusion, our computational framework of FLMTS for improving the prediction of potential kinase inhibitors successfully aggregates feature information from multisource knowledge, yielding better prediction performance than existing state-of-the-art methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Source code and the dataset supporting the conclusions of this article are available from the corresponding author upon reasonable request.

References

  1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. https://doi.org/10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  2. Levitzki A (2003) Protein kinase inhibitors as a therapeutic modality. Acc Chem Res 36(6):462–469. https://doi.org/10.1021/ar0201207

    Article  CAS  PubMed  Google Scholar 

  3. Muller S, Chaikuad A, Gray NS, Knapp S (2015) The ins and outs of selective kinase inhibitor development. Nat Chem Biol 11(11):818–821. https://doi.org/10.1038/nchembio.1938

    Article  CAS  PubMed  Google Scholar 

  4. Bhullar KS et al (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17(1):48. https://doi.org/10.1186/s12943-018-0804-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roskoski R Jr (2021) Properties of FDA-approved small molecule protein kinase inhibitors: a 2021 update. Pharm Res 165:105463. https://doi.org/10.1016/j.phrs.2021.105463

    Article  CAS  Google Scholar 

  6. Fabbro D, Cowan-Jacob SW, Moebitz H (2015) Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharm 172(11):2675–2700. https://doi.org/10.1111/bph.13096

    Article  CAS  Google Scholar 

  7. Fedorov O, Muller S, Knapp S (2010) The (un)targeted cancer kinome. Nat Chem Biol 6(3):166–169. https://doi.org/10.1038/nchembio.297

    Article  CAS  PubMed  Google Scholar 

  8. Botta M (2014) New frontiers in kinases: special issue. ACS Med Chem Lett 5:270. https://doi.org/10.1021/ml500071m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3(5):417–429. https://doi.org/10.1038/nrd1382

    Article  CAS  PubMed  Google Scholar 

  10. Merget B, Turk S, Eid S, Rippmann F, Fulle S (2017) Profiling prediction of kinase inhibitors: toward the virtual assay. J Med Chem 60(1):474–485. https://doi.org/10.1021/acs.jmedchem.6b01611

    Article  CAS  PubMed  Google Scholar 

  11. Bora A, Avram S, Ciucanu I, Raica M, Avram S (2016) Predictive models for fast and effective profiling of kinase inhibitors. J Chem Inf Model 56(5):895–905. https://doi.org/10.1021/acs.jcim.5b00646

    Article  CAS  PubMed  Google Scholar 

  12. Cao D-S et al (2013) Large-scale prediction of human kinase–inhibitor interactions using protein sequences and molecular topological structures. Anal Chim Acta 792:10–18. https://doi.org/10.1016/j.aca.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  13. Niijima S, Shiraishi A, Okuno Y (2012) Dissecting kinase profiling data to predict activity and understand cross-reactivity of kinase inhibitors. J Chem Inf Model 52(4):901–912. https://doi.org/10.1021/ci200607f

    Article  CAS  PubMed  Google Scholar 

  14. Avram S, Bora A, Halip L, Curpan R (2018) Modeling kinase inhibition using highly confident data sets. J Chem Inf Model 58(5):957–967. https://doi.org/10.1021/acs.jcim.7b00729

    Article  CAS  PubMed  Google Scholar 

  15. Yabuuchi H et al (2011) Analysis of multiple compound–protein interactions reveals novel bioactive molecules. Mol Syst Biol 7(1):472. https://doi.org/10.1093/bioinformatics/btaa577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schürer SC, Muskal SM (2013) Kinome-wide activity modeling from diverse public high-quality data sets. J Chem Inf Model 53(1):27–38. https://doi.org/10.1021/ci300403k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X et al (2020) Deep learning enhancing kinome-wide polypharmacology profiling: model construction and experiment validation. J Med Chem 63(16):8723–8737. https://doi.org/10.1021/acs.jmedchem.9b00855

    Article  CAS  PubMed  Google Scholar 

  18. Manallack DT et al (2002) Selecting screening candidates for kinase and G protein-coupled receptor targets using neural networks. J Chem Inf Comput Sci 42(5):1256–1262. https://doi.org/10.1021/ci020267c

    Article  CAS  PubMed  Google Scholar 

  19. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113. https://doi.org/10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  20. Cheng F, Kovács IA, Barabási A-L (2019) Network-based prediction of drug combinations. Nat Commun 10(1):1–11. https://doi.org/10.1038/s41467-019-09186-x

    Article  CAS  Google Scholar 

  21. Ding P, Ouyang W, Luo J, Kwoh CK (2020) Heterogeneous information network and its application to human health and disease. Brief Bioinform 21(4):1327–1346. https://doi.org/10.1093/bib/bbz091

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y et al (2017) A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 8(1):573. https://doi.org/10.1038/s41467-017-00680-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen C, Luo J, Ouyang W, Ding P, Wu H (2020) Identification of small molecule–miRNA associations with graph regularization techniques in heterogeneous networks. J Chem Inf Model 60(12):6709–6721. https://doi.org/10.1021/acs.jcim.0c00975

    Article  CAS  PubMed  Google Scholar 

  24. Cheng F et al (2018) Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 9(1):2691. https://doi.org/10.1038/s41467-018-05116-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xuan P et al (2019) Drug repositioning through integration of prior knowledge and projections of drugs and diseases. Bioinformatics 35(20):4108–4119. https://doi.org/10.1093/bioinformatics/btz182

    Article  CAS  PubMed  Google Scholar 

  26. Ding P, Yin R, Luo J, Kwoh CK (2019) Ensemble prediction of synergistic drug combinations incorporating biological, chemical, pharmacological, and network knowledge. IEEE J Biomed Health Inform 23(3):1336–1345. https://doi.org/10.1109/JBHI.2018.2852274

    Article  PubMed  Google Scholar 

  27. Chen X, Huang YA, You ZH, Yan GY, Wang XS (2017) A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5):733–739. https://doi.org/10.1093/bioinformatics/btw715

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Patra JC (2010) Genome-wide inferring gene–phenotype relationship by walking on the heterogeneous network. Bioinformatics 26(9):1219–1224. https://doi.org/10.1093/bioinformatics/btq108

    Article  CAS  PubMed  Google Scholar 

  29. Lv YL et al (2015) Identifying novel associations between small molecules and miRNAs based on integrated molecular networks. Bioinformatics 31(22):3638–3644. https://doi.org/10.1093/bioinformatics/btv417

    Article  CAS  PubMed  Google Scholar 

  30. Shen C, Luo J, Ouyang W, Ding P, Chen X (2020) IDDkin: Network-based influence deep diffusion model for enhancing prediction of kinase inhibitors. Bioinformatics 36(22–23):5481–5491. https://doi.org/10.1093/bioinformatics/btaa1058

    Article  CAS  Google Scholar 

  31. Xiao Q, Luo J, Liang C, Cai J, Ding P (2018) A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34(2):239–248. https://doi.org/10.1093/bioinformatics/btx545

    Article  CAS  PubMed  Google Scholar 

  32. Jamali AA, Kusalik A, Wu F-X (2020) MDIPA: a microRNA–drug interaction prediction approach based on non-negative matrix factorization. Bioinformatics 36(20):5061–5067. https://doi.org/10.1093/bioinformatics/btaa577

    Article  CAS  PubMed  Google Scholar 

  33. Davis MI et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29(11):1046–1051. https://doi.org/10.1038/nbt.1990

    Article  CAS  PubMed  Google Scholar 

  34. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29(11):1039–1045. https://doi.org/10.1038/nbt.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Metz JT et al (2011) Navigating the kinome. Nat Chem Biol 7(4):200–202. https://doi.org/10.1038/nchembio.530

    Article  CAS  PubMed  Google Scholar 

  36. Elkins JM et al (2016) Comprehensive characterization of the published Kinase Inhibitor Set. Nat Biotechnol 34(1):95–103. https://doi.org/10.1038/nbt.3374

    Article  CAS  PubMed  Google Scholar 

  37. Knapp S et al (2013) A public-private partnership to unlock the untargeted kinome. Nat Chem Biol 9(1):3–6. https://doi.org/10.1038/nchembio.1113

    Article  CAS  PubMed  Google Scholar 

  38. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11(23–24):1046–1053. https://doi.org/10.1016/j.drudis.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  39. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197. https://doi.org/10.1016/0022-2836(81)90087-5

    Article  CAS  PubMed  Google Scholar 

  40. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958. https://doi.org/10.1016/j.ajhg.2008.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43. https://doi.org/10.1007/BF02289026

    Article  Google Scholar 

  42. Zeng X et al (2019) deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35(24):5191–5198. https://doi.org/10.1093/bioinformatics/btz418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilhelm S et al (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844. https://doi.org/10.1038/nrd2130

    Article  CAS  PubMed  Google Scholar 

  44. Wells SA Jr et al (2010) Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 28(5):767. https://doi.org/10.1200/JCO.2009.23.6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Motzer RJ et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124. https://doi.org/10.1056/NEJMoa065044

    Article  CAS  PubMed  Google Scholar 

  46. Kitagawa D et al (2013) Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells 18(2):110–122. https://doi.org/10.1111/gtc.12022

    Article  CAS  PubMed  Google Scholar 

  47. Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17(5):353–377. https://doi.org/10.1038/nrd.2018.21

    Article  CAS  PubMed  Google Scholar 

  48. Tang LWT et al (2021) Infigratinib is a reversible inhibitor and mechanism-based inactivator of cytochrome P450 3A4. Drug Metab Dispos 49(9):856–868. https://doi.org/10.1124/dmd.121.000508

    Article  CAS  PubMed  Google Scholar 

  49. Wang H et al (2022) Decreased CXCR2 expression on circulating monocytes of colorectal cancer impairs recruitment and induces Re-education of tumor-associated macrophages. Cancer Lett 529:112–125. https://doi.org/10.1016/j.canlet.2022.01.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Hunan Provincial Natural Science Foundation of China (No. 2019JJ50520), Hunan Provincial Innovation Foundation For Postgraduate (No. CX20210937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Shen, C., Wu, H. et al. Improving the Prediction of Potential Kinase Inhibitors with Feature Learning on Multisource Knowledge. Interdiscip Sci Comput Life Sci 14, 775–785 (2022). https://doi.org/10.1007/s12539-022-00523-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00523-1

Keywords

Navigation