Skip to main content
Log in

Anti-cancer Peptide Recognition Based on Grouped Sequence and Spatial Dimension Integrated Networks

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The diversification of the characteristic sequences of anti-cancer peptides has imposed difficulties on research. To effectively predict new anti-cancer peptides, this paper proposes a more suitable feature grouping sequence and spatial dimension-integrated network algorithm for anti-cancer peptide sequence prediction called GRCI-Net. The main process is as follows: First, we implemented the fusion reduction of binary structure features and K-mer sparse matrix features through principal component analysis and generated a set of new features; second, we constructed a new bidirectional long- and short-term memory network. We used traditional convolution and dilated convolution to acquire features in the spatial dimension using the memory network's grouping sequence model, which is designed to better handle the diversification of anti-cancer peptide feature sequences and to fully learn the contextual information between features. Finally, we achieved the fusion of grouping sequence features and spatial dimensional integration features through two sets of dense network layers, achieved the prediction of anti-cancer peptides through the sigmoid function, and verified the approach with two public datasets, ACP740 (accuracy reached 0.8230) and ACP240 (accuracy reached 0.8750). The following is a link to the model code and datasets mentioned in this article: https://github.com/ YouHongfeng101/ACP-DL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao B, Zhou C, Zhang G et al (2020) ACPred-Fuse: fusing multi-view information improves the prediction of Anti-cancer peptides[J]. Brief Bioinform 21(5):1846–1855. https://doi.org/10.1093/bib/bbz088

    Article  PubMed  Google Scholar 

  2. Gabernet G, Gautschi D, Müller AT et al (2019) In silico design and optimization of selective membranolytic Anti-cancer peptides[J]. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-47568-9

    Article  CAS  Google Scholar 

  3. Grisoni F, Neuhaus CS, Hishinuma M et al (2019) De novo design of Anti-cancer peptides by ensemble artificial neural networks[J]. J Mol Model. https://doi.org/10.1007/s00894-019-4007-6

    Article  PubMed  Google Scholar 

  4. Manavalan B, Basith S, Shin TH, et al (2017) MLACP: Machine-learning-based prediction of Anti-cancer peptides[J]. Oncotarget 8(44): 77121–77136. https://doi.org/10.18632/oncotarget.20365

  5. Schaduangrat N, Nantasenamat C, Prachayasittikul V et al (2019) ACPred: a computational tool for the prediction and analysis of Anti-cancer peptides[J]. Molecules 24(10):1973. https://doi.org/10.3390/molecules24101973

    Article  CAS  PubMed Central  Google Scholar 

  6. Wan Y, Wang Z, Lee TY (2021) Incorporating support vector machine with sequential minimal optimization to identify Anti-cancer peptides[J]. BMC Bioinform 22(1):1–16. https://doi.org/10.1186/s12859-021-03965-4

    Article  CAS  Google Scholar 

  7. Wei L, Ding Y, Su R et al (2018) Prediction of human protein subcellular localization using deep learning[J]. J Parallel Distrib Comput 117:212–217. https://doi.org/10.1016/j.jpdc.2017.08.009

    Article  Google Scholar 

  8. Zou Q, Xing P, Wei L et al (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA[J]. RNA 25(2):205–218. https://doi.org/10.1261/rna.069112.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen W, Feng P, Yang H et al (2018) iRNA-3typeA: identifying three types of modification at RNA’s adenosine sites[J]. Mol Therapy Nucleic Acids 11:468–474. https://doi.org/10.1016/j.omtn.2018.03.012

    Article  CAS  Google Scholar 

  10. Jiao Y, Du P (2016) Performance measures in evaluating machine learning based bioinformatics predictors for classifications[J]. Quantit Biol 4(4):320–330. https://doi.org/10.1007/s40484-016-0081-2

    Article  Google Scholar 

  11. Du P, Tian Y, Yan Y (2012) Subcellular localization prediction for human internal and organelle membrane proteins with projected gene ontology scores[J]. J Theor Biol 313:61–67. https://doi.org/10.1016/j.jtbi.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, You Z, Li L et al (2020) A survey of current trends in computational predictions of protein-protein interactions[J]. Front Comp Sci 14(4):144901. https://doi.org/10.1007/s11704-019-8232-z

    Article  Google Scholar 

  13. Li S, You ZH, Guo H et al (2015) Inverse-free extreme learning machine with optimal information updating[J]. IEEE Trans Cybernet 46(5):1229–1241. https://doi.org/10.1109/TCYB.2015.2434841

    Article  Google Scholar 

  14. Zhu L, You ZH, Huang DS (2013) Increasing the reliability of protein-protein interaction networks via non-convex semantic embedding[J]. Neurocomputing 121:99–107. https://doi.org/10.1016/j.neucom.2013.04.027

    Article  Google Scholar 

  15. Chen ZH, You ZH, Li LP et al (2019) Prediction of self-interacting proteins from protein sequence information based on random projection model and fast Fourier transform[J]. Int J Mol Sci 20(4):930. https://doi.org/10.3390/ijms20040930

    Article  CAS  PubMed Central  Google Scholar 

  16. Yi HC, You ZH, Zhou X et al (2019) ACP-DL: a deep learning long short-term memory model to predict Anti-cancer peptides using high-efficiency feature representation[J]. Mol Therapy Nucleic Acids 17:1–9. https://doi.org/10.1016/j.omtn.2019.04.025

    Article  CAS  Google Scholar 

  17. Yu L, Jing R, Liu F et al (2020) DeepACP: a novel computational approach for accurate identification of Anti-cancer peptides by deep learning algorithm[J]. Mol Therapy Nucleic Acids 22:862–870. https://doi.org/10.1016/j.omtn.2020.10.005

    Article  CAS  Google Scholar 

  18. Ahmed S, Muhammod R, Adilina S et al (2020) ACP-MHCNN: An Accurate Multi-Headed Deep-Convolutional Neural Network to Predict Anti-cancer peptides[J]. bioRxiv. https://doi.org/10.1101/2020.09.25.313668

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lane N, Kahanda I (2020) DeepACPpred: a novel hybrid cnn-rnn architecture for predicting anti-cancer peptides[C]. Int Conf Pract Applic Comput Biol Bioinform. https://doi.org/10.1007/978-3-030-54568-0_7

    Article  Google Scholar 

  20. Shao YT, Chou KC (2020) pLoc_Deep-mAnimal: A novel deep cnn-blstm network to predict subcellular localization of animal proteins[J]. Nat Sci 12(5):281–291. https://doi.org/10.4236/ns.2020.125024

    Article  CAS  Google Scholar 

  21. Fang C, Moriwaki Y, Li C et al (2019) Prediction of antifungal peptides by deep learning with character embedding[J]. IPSJ Trans Bioinform 12:21–29. https://doi.org/10.2197/ipsjtbio.12.21

    Article  Google Scholar 

  22. Yan J, Bhadra P, Li A et al (2020) Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning[J]. Mol Therapy-Nucleic Acids 20:882–894. https://doi.org/10.1016/j.omtn.2020.05.006

    Article  CAS  Google Scholar 

  23. Rao B, Zhang L, Zhang G (2020) ACP-GCN: the identification of Anti-cancer peptides based on graph convolution networks[J]. IEEE Access 8:176005–176011. https://doi.org/10.1109/ACCESS.2020.3023800

    Article  Google Scholar 

  24. Chen W, Ding H, Feng P, et al (2016) iACP: a sequence-based tool for identifying Anti-cancer peptides[J]. Oncotarget 7(13): 16895–16909. https://doi.org/10.18632/oncotarget.7815

  25. You H, Tian S, Yu L et al (2019) Pixel-level remote sensing image recognition based on bidirectional word vectors[J]. IEEE Trans Geosci Remote Sens 58(2):1281–1293. https://doi.org/10.1109/TGRS.2019.2945591

    Article  Google Scholar 

  26. Zhang J, Liu F, Xu W et al (2019) Feature fusion text classification model combining CNN and BiGRU with multi-attention mechanism[J]. Future Internet 11(11):237. https://doi.org/10.3390/fi11110237

    Article  Google Scholar 

  27. Tyagi A, Kapoor P, Kumar R et al (2013) In silico models for designing and discovering novel Anti-cancer peptides[J]. Sci Rep 3(1):1–8. https://doi.org/10.1038/srep02984

    Article  Google Scholar 

  28. Chen X, Ishwaran H (2012) Random forests for genomic data analysis[J]. Genomics 99(6):323–329. https://doi.org/10.1016/j.ygeno.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H (2004) The optimality of naive Bayes[J]. AA 1(2): 562–567. https://www.aaai.org/Papers/FLAIRS/2004/Flairs04-097.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, H., Yu, L., Tian, S. et al. Anti-cancer Peptide Recognition Based on Grouped Sequence and Spatial Dimension Integrated Networks. Interdiscip Sci Comput Life Sci 14, 196–208 (2022). https://doi.org/10.1007/s12539-021-00481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00481-0

Keywords

Navigation