Skip to main content
Log in

Identifiable Temporal Feature Selection via Horizontal Visibility Graph Towards Smart Medical Applications

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

With the proliferation of IoMT (Internet of Medical Things), billions of connected medical devices are constantly producing oceans of time series sensor data, dubbed as time series for short. Considering these time series reflect various functional states of the human body, how to effectively detect the corresponding abnormalities is of great significance for smart healthcare. Accordingly, we develop a horizontal visibility graph-based temporal classification model for disease diagnosis. We conduct extensive comparison experiments on the benchmark datasets to justify the superiority of our method in term of accuracy and efficiency. Besides, we have released the codes and parameters to facilitate the community research.

Graphic Abstract

We propose an identifiable temporal feature selection via horizontal visibility graph for time series classification (TSC) based disease diagnosis. We conduct comparison experiments on the benchmark datasets to justify the superiority of our method in term of accuracy and efficiency. As a side contribution, we have released the codes and parameters to facilitate the community research (https://github.com/sdujicun/SSVG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Our method: https://github.com/sdujicun/SSVG.

  2. www.timeseriesclassification.com.

  3. https://github.com/sdujicun/SSVG.

References

  1. Saravanan V, Manikandan R, Maharasan K, Ramesh R (2020) Optimized attribute selection using artificial plant (ap) algorithm with esvm classifier (ap-esvm) and improved singular value decomposition (isvd)-based dimensionality reduction for large micro-array biological data. Interdiscip Sci Comput Life Sci 12:1–13. https://doi.org/10.1007/s12539-020-00377-5

    Article  Google Scholar 

  2. Zhang C, Genchev GZ, Bergau D, Lu H (2020) Correlations between phenotypes and biological process ontologies in monogenic human diseases. Interdiscip Sci Comput Life Sci 12:547–554. https://doi.org/10.1007/s12539-020-00400-9

    Article  Google Scholar 

  3. Ji C, Zhao C, Pan L, Liu S, Yang C, Meng X (2019) A just-in-time shapelet selection service for online time series classification. Comput Netw 157:89–98. https://doi.org/10.1016/j.comnet.2019.04.020

    Article  Google Scholar 

  4. Zhan P, Hu Y, Chen L, Luo W, Li X (2021) Spar: set-based piecewise aggregate representation for time series anomaly detection. Sci China Inf Sci 64:149101:1–149101:3. https://doi.org/10.1007/s11432-020-3021-6

    Article  Google Scholar 

  5. Hu Y, Guan P, Zhan P, Ding Y, Li X (2018) A novel segmentation and representation approach for streaming time series. IEEE Access 7:184423–184437. https://doi.org/10.1109/ACCESS.2018.2828320

    Article  Google Scholar 

  6. Malleswari PN, Bindu CH, Prasad KS (2021) Cardiac severity classification using pre trained neural networks. Interdiscip Sci Comput Life Sci 1:1–8. https://doi.org/10.1007/s12539-021-00416-9

    Article  Google Scholar 

  7. Hu Y, Ren P, Luo W, Zhan P, Li X (2019) Multi-resolution representation with recurrent neural networks application for streaming time series in IoT. Comput Netw 152:114–132. https://doi.org/10.1016/j.comnet.2019.01.035

    Article  Google Scholar 

  8. Wang K, Wang C, Wang Y, Luo W, Zhan P, Hu Y, Li X (2021) Time series classification via enhanced temporal representation learning. In: Proceedings of the international conference on big data analytics, IEEE, pp 188–192. https://doi.org/10.1109/ICBDA51983.2021.9403177

  9. Hu Y, Ji C, Jing M, Ding Y, Kuai S, Li X (2016) A continuous segmentation algorithm for streaming time series. In: Proceedings of the international conference on collaborative computing: networking, applications and worksharing, Springer, pp 140–151. https://doi.org/10.1007/978-3-319-59288-6_13

  10. Hu Y, Ji C, Jing M, Li X (2016) A k-motifs discovery approach for large time-series data analysis. In: Proceedings of the Asia-pacific web conference on technologies and applications, Springer, pp 492–496. https://doi.org/10.1007/978-3-319-45817-5_53

  11. Hu Y, Yang C, Ji C, Xu Y, Li X (2016) Efficient snapshot KNN join processing for large data using mapreduce. In: Proceedings of the international conference on parallel and distributed systems, IEEE, pp 713–720. https://doi.org/10.1109/ICPADS.2016.0098

  12. Chang KW, Deka B, Hwu WW, Roth D (2012) Efficient pattern-based time series classification on gpu. In: Proceedings of the International Conference on Data Mining, IEEE, pp 131–140. https://doi.org/10.1109/ICDM.2012.132

  13. Prieto OJ, Alonso-González CJ, Rodríguez JJ (2015) Stacking for multivariate time series classification. Pattern Anal Appl 18:297–312. https://doi.org/10.1007/s10044-013-0351-9

    Article  Google Scholar 

  14. Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by shapelet transformation. Data Mining Knowl Discov 28:851–881. https://doi.org/10.1007/s10618-013-0322-1

    Article  Google Scholar 

  15. Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the international Conference on knowledge discovery and data mining, ACM, pp 392–401. https://doi.org/10.1145/2623330.2623613

  16. Meigal AY, Korzun DG, Gerasimova-Meigal LI, Borodin AV, Zavyalova YV (2019) Ambient intelligence at-home laboratory for human everyday life. Int J Embedded Real-Time Commun Syst (IJERTCS) 10:117–134. https://doi.org/10.4018/IJERTCS.2019040108

    Article  Google Scholar 

  17. Wasimuddin M, Elleithy K, Abuzneid A, Faezipour M, Abuzaghleh O (2020) Stages-based ECG signal analysis from traditional signal processing to machine learning approaches: a survey. IEEE Access 8:177782–177803. https://doi.org/10.1109/ACCESS.2020.3026968

    Article  Google Scholar 

  18. Hu Y, Ji C, Zhang Q, Chen L, Zhan P, Li X (2020) A novel multi-resolution representation for time series sensor data analysis. Soft Comput 24:10535–10560. https://doi.org/10.1007/s00500-019-04562-7

    Article  Google Scholar 

  19. Ji C, Shao Q, Sun J, Liu S, Pan L, Wu L, Yang C (2016) Device data ingestion for industrial big data platforms with a case study. Sensors 16:279–293. https://doi.org/10.3390/s16030279

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Q, Hu Y, Ji C, Zhan P, Li X (2018) Edge computing application: real-time anomaly detection algorithm for sensing data. J Comput Res Dev 55:524–536. https://doi.org/10.7544/issn1000-1239.2018.20170804

    Article  Google Scholar 

  21. Zhan P, Wang S, Wang J, Qu L, Wang K, Hu Y, Li X (2021) Temporal anomaly detection on IoT-enabled manufacturing. J Intell Manuf. https://doi.org/10.1007/s10845-021-01768-1

    Article  Google Scholar 

  22. Ye L, Keogh E (2011) Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Mining Knowl Discov 22:149–182. https://doi.org/10.1007/s10618-010-0179-5

    Article  Google Scholar 

  23. Zhao H, Pan Z, Tao W (2020) Regularized shapelet learning for scalable time series classification. Comput Netw 173:107171. https://doi.org/10.1016/j.comnet.2020.107171

    Article  Google Scholar 

  24. Bagnall A, Lines J, Hills J, Bostrom A (2015) Time-series classification with cote: the collective of transformation-based ensembles. IEEE Trans Knowl Data Eng 27:2522–2535. https://doi.org/10.1109/TKDE.2015.2416723

    Article  Google Scholar 

  25. Lines J, Taylor S, Bagnall A (2018) Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles. ACM Trans Knowl Discov Data. https://doi.org/10.1145/3182382

    Article  Google Scholar 

  26. Middlehurst M, Large J, Cawley GC, Bagnall AJ (2020) The temporal dictionary ensemble (TDE) classifier for time series classification. In: Proceedings of the European conference on machine learning and knowledge discovery in databases, vol 12457. Springer, pp 660–676. https://doi.org/10.1007/978-3-030-67658-2-38

  27. Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1154–1162. https://doi.org/10.1145/2020408.2020587

  28. Xing Z, Pei J, Yu PS, Wang K (2011) Extracting interpretable features for early classification on time series. In: Proceedings of the SIAM international conference on data mining, SIAM, pp 247–258. https://doi.org/10.1137/1.9781611972818.22

  29. Grabocka J, Wistuba M, Schmidt-Thieme L (2016) Fast classification of univariate and multivariate time series through shapelet discovery. Knowl Inf Syst 49:429–454. https://doi.org/10.1007/s10115-015-0905-9

    Article  Google Scholar 

  30. Rakthanmanon T, Keogh E (2013) Fast shapelets: A scalable algorithm for discovering time series shapelets. In: Proceedings of the SIAM international conference on data mining, SIAM, pp 668–676. https://doi.org/10.1137/1.9781611972832.74

  31. Li G, Choi BKK, Xu J, Bhowmick SS, Chun K, Wong GL (2020) Efficient shapelet discovery for time series classification. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.2995870

    Article  Google Scholar 

  32. Zhang Z, Zhang H, Wen Y, Yuan X (2016) Accelerating time series shapelets discovery with key points. In: Proceedings of the Asia-Pacific web conference, Springer, pp 330–342. https://doi.org/10.1007/978-3-319-45817-5-26

  33. Ji C, Zhao C, Liu S, Yang C, Pan L, Wu L, Meng X (2019) A fast shapelet selection algorithm for time series classification. Comput Netw 148:231–240. https://doi.org/10.1016/j.comnet.2018.11.031

    Article  Google Scholar 

  34. Zou X, Zheng X, Ji C, Zhang Y (2021) An improved fast shapelet selection algorithm and its application to pervasive EEQ. Personal Ubiquitous Comput. https://doi.org/10.1007/s00779-020-01501-4

    Article  Google Scholar 

  35. Gordon D, Hendler D, Rokach L (2015) Fast and space-efficient shapelets-based time-series classification. Intell Data Anal 19:953–981. https://doi.org/10.3233/IDA-150753

    Article  Google Scholar 

  36. Renard X, Rifqi M, Erray W, Detyniecki M (2015) Random-shapelet: an algorithm for fast shapelet discovery. In: Proceedings of the IEEE international conference on data science and advanced analytics, IEEE, pp 1–10. https://doi.org/10.1109/DSAA.2015.7344782

  37. Karlsson I, Papapetrou P, Boström H (2016) Generalized random shapelet forests. Data Mining Knowl Discov 30:1053–1085. https://doi.org/10.1007/s10618-016-0473-y

    Article  Google Scholar 

  38. Lods A, Malinowski S, Tavenard R, Amsaleg L (2017) Learning DTW-preserving shapelets. In: Proceedings of the international symposium on intelligent data analysis, Springer, pp 198–209. https://doi.org/10.1007/978-3-319-68765-0-17

  39. Hu Y, Zhan P, Xu Y, Zhao J, Li Y, Li X (2021) Temporal representation learning for time series classification. Neural Comput Appl 33:3169–3182. https://doi.org/10.1007/s00521-020-05179-w

    Article  Google Scholar 

  40. Li G, Yan W, Wu Z (2019) Discovering shapelets with key points in time series classification. Exp Syst Appl 132:76–86. https://doi.org/10.1016/j.eswa.2019.04.062

    Article  Google Scholar 

  41. Lacasa L, Luque B, Luque J, Nuño JC (2009) The visibility graph: a new method for estimating the hurst exponent of fractional brownian motion. Europhys Lett 86:30001. https://doi.org/10.1209/0295-5075/86/30001

    Article  CAS  Google Scholar 

  42. Li D, Lin J, Bissyandé TF, Klein J, Traon YL (2018) Extracting statistical graph features for accurate and efficient time series classification. In: Proceedings of the international conference on extending database technology, pp 205–216. https://doi.org/10.5441/002/edbt.2018.19

  43. Peyman A, De BM, Henri C, Ben K, Colin L, Nodari S, Constantinos T (2018) An efficient algorithm for the 1d total visibility-index problem and its parallelization. ACM J Exp Algorithmics 23:1–23. https://doi.org/10.1145/3209685

    Article  Google Scholar 

  44. Luque B, Lacasa L, Ballesteros F, Luque J (2009) Horizontal visibility graphs: exact results for random time series. Phys Rev E 80:46103. https://doi.org/10.1103/PhysRevE.80.046103

    Article  CAS  Google Scholar 

  45. Stephen M, Gu C, Yang H (2015) Visibility graph based time series analysis. PLoS ONE 10:1–19. https://doi.org/10.1371/journal.pone.0143015

    Article  CAS  Google Scholar 

  46. Xu P, Zhang R, Deng Y (2017) A novel weight determination method for time series data aggregation. Physica A Stat Mech Appl 482:42–55. https://doi.org/10.1016/j.physa.2017.04.028

    Article  Google Scholar 

  47. Zhang R, Zou Y, Zhou J, Gao ZK, Guan S (2017) Visibility graph analysis for re-sampled time series from auto-regressive stochastic processes. Commun Nonlinear Sci Numer Simulat 42:396–403. https://doi.org/10.1016/j.cnsns.2016.04.031

    Article  Google Scholar 

  48. Zhang R, Ashuri B, Deng Y (2017) A novel method for forecasting time series based on fuzzy logic and visibility graph. Adv Data Anal Classification 11:759–783. https://doi.org/10.1007/s11634-017-0300-3

    Article  Google Scholar 

  49. Gonçalves BA, Carpi L, Rosso OA, Ravetti MG (2016) Time series characterization via horizontal visibility graph and information theory. Physica A Stat Mech Appl 464:93–102. https://doi.org/10.1016/j.physa.2016.07.063

    Article  Google Scholar 

  50. Iacovacci J, Lacasa L (2016) Sequential motif profile of natural visibility graphs. Phys Rev E 94:52309. https://doi.org/10.1103/PhysRevE.94.052309

    Article  Google Scholar 

  51. Sathianwiriyakhun P, Janyalikit T, Ratanamahatana CA (2016) Fast and accurate template averaging for time series classification. In: Proceedings of the international conference on knowledge and smart technology, IEEE, pp 49–54. https://doi.org/10.1109/KST.2016.7440530

  52. Ren P, Chen Z, Li J, Ren Z, Ma J, De Rijke M (2019) Repeatnet: a repeat aware neural recommendation machine for session-based recommendation. In: Proceedings of the AAAI conference on artificial intelligence, AAAI, pp 4806–4813. https://doi.org/10.1609/aaai.v33i01.33014806

  53. Ren P, Chen Z, Monz C, Ma J, de Rijke M (2020) Thinking globally, acting locally: Distantly supervised global-to-local knowledge selection for background based conversation. In: Proceedings of the AAAI conference on artificial intelligence, AAAI, pp 8697–8704. https://doi.org/10.1609/aaai.v34i05.6395

  54. Pei J, Ren P, de Rijke M (2021) A cooperative memory network for personalized task-oriented dialogue systems with incomplete user profiles. In: Proceedings of the ACM web conference, ACM, pp 1–10. https://doi.org/10.1145/3442381.3449843

  55. Qu L, Liu M, Cao D, Nie L, Tian Q (2020) Context-aware multi-view summarization network for image-text matching. In: Proceedings of the ACM international conference on multimedia, ACM, pp 1047–1055. https://doi.org/10.1145/3394171.3413961

  56. Zhan YW, Luo X, Wang Y, Xu XS (2020) Supervised hierarchical deep hashing for cross-modal retrieval. In: Proceedings of the ACM international conference on multimedia, ACM, pp 3386–3394. https://doi.org/10.1145/3394171.3413962

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editors for their insightful comments and suggestions, which are greatly helpful for improving the quality of this paper. This work is supported by the Natural Science Foundation of Shandong Province (Grant no. ZR2020QF112); the project of CERNET Innovation (NGII20190109); the project of Qingdao Postdoctoral Applied Research (QDPostD20190901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Hu, Y., Wang, K. et al. Identifiable Temporal Feature Selection via Horizontal Visibility Graph Towards Smart Medical Applications. Interdiscip Sci Comput Life Sci 13, 717–730 (2021). https://doi.org/10.1007/s12539-021-00460-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00460-5

Keywords

Navigation