A Systems Biology Roadmap to Decode mTOR Control System in Cancer

  • Mohammadreza Dorvash
  • Mohammad Farahmandnia
  • Iman TavassolyEmail author


Mechanistic target of rapamycin (mTOR) is a critical protein in the regulation of cell fate decision making, especially in cancer cells. mTOR acts as a signal integrator and is one of the main elements of interactions among the pivotal cellular processes such as cell death, autophagy, metabolic reprogramming, cell growth, and cell cycle. The temporal control of these processes is essential for the cellular homeostasis and dysregulation of mTOR signaling pathway results in different phenotypes, including aging, oncogenesis, cell survival, cell growth, senescence, quiescence, and cell death. In this paper, we have proposed a systems biology roadmap to study mTOR control system, which introduces the theoretical and experimental modalities to decode temporal and dynamical characteristics of mTOR signaling in cancer.


Aging Bistability Cancer Cell fate Dynamic modeling Mathematical models mTOR Oscillations Signaling network Systems biology 


  1. 1.
    Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729CrossRefPubMedGoogle Scholar
  2. 2.
    Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(20):3589–3594CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Inoki K, Corradetti MN, Guan K-L (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37(1):19CrossRefPubMedGoogle Scholar
  5. 5.
    Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2(67):pe24-pe24CrossRefGoogle Scholar
  6. 6.
    Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11(7):523CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1–S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13(6):252–259CrossRefPubMedGoogle Scholar
  9. 9.
    Vergès B, Cariou B (2015) mTOR inhibitors and diabetes. Diabetes Res Clin Pract 110(2):101–108CrossRefPubMedGoogle Scholar
  10. 10.
    Jia G, Aroor AR, Martinez-Lemus LA, Sowers JR (2014) Overnutrition, mTOR signaling, and cardiovascular diseases. Am J Physiol Regul Integr Comp Physiol 307(10):R1198–R1206CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Perl A (2016) Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol 12(3):169CrossRefPubMedGoogle Scholar
  12. 12.
    Ginzberg MB, Chang N, D’Souza H, Patel N, Kafri R, Kirschner MW (2018) Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. Elife 7:e26957CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu S, Cai Y, Wei Y (2014) mTOR signaling from cellular senescence to organismal aging. Aging Dis 5(4):263PubMedGoogle Scholar
  14. 14.
    Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Investig 123(3):980–989CrossRefPubMedGoogle Scholar
  15. 15.
    Ginzberg MB, Kafri R, Kirschner M (2015) On being the right (cell) size. Science 348(6236):1245075CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Garratt M, Nakagawa S, Simons MJ (2016) Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell 15(4):737–743CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68CrossRefPubMedGoogle Scholar
  18. 18.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mannick JB, Morris M, Hockey HUP, Roma G, Beibel M, Kulmatycki K, Watkins M, Shavlakadze T, Zhou W, Quinn D et al (2018) TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 10(449):ee1564CrossRefGoogle Scholar
  20. 20.
    Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3(4):371–377CrossRefPubMedGoogle Scholar
  21. 21.
    Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5(8):671CrossRefPubMedGoogle Scholar
  22. 22.
    Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868CrossRefPubMedGoogle Scholar
  23. 23.
    Neuhaus P, Klupp J, Langrehr JM (2001) mTOR inhibitors: an overview. Liver Transpl 7(6):473–484CrossRefPubMedGoogle Scholar
  24. 24.
    Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. J Antibiot 28(10):721–726CrossRefPubMedGoogle Scholar
  25. 25.
    Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15(5):273CrossRefPubMedGoogle Scholar
  26. 26.
    Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sahra IB, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti J-F, Giorgetti-Peraldi S, Bost F (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Can Res 71(13):4366–4372CrossRefGoogle Scholar
  28. 28.
    Tavassoly I, Goldfarb J, Iyengar R (2018) Systems biology primer: the basic methods and approaches. Essays Biochem 62(4):487–500CrossRefPubMedGoogle Scholar
  29. 29.
    Din FVN, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(7):1504–1515.e1503CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155CrossRefPubMedGoogle Scholar
  31. 31.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hansen J, Meretzky D, Woldesenbet S, Stolovitzky G, Iyengar R (2017) A flexible ontology for inference of emergent whole cell function from relationships between subcellular processes. Sci Rep 7(1):17689CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM, Bauman WT, Xuan J, Zhang B, Facey C (2011) Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Investig 5(1):35–44PubMedPubMedCentralGoogle Scholar
  34. 34.
    Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, Baumann WT, Tyson JJ, Xuan J, Wang Y (2012) Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Can Res 72(6):1321–1331Google Scholar
  35. 35.
    Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dorvash M, Farahmandnia M, Mosaddeghi P, Farahmandnejad M, Saber H, Khorraminejad-Shirazi M, Azadi A, Tavassoly I (2019) Dynamic modeling of signal transduction by mTOR complexes in cancer. J Theor Biol 483:109992CrossRefPubMedGoogle Scholar
  37. 37.
    Meng D, Frank AR, Jewell JL (2018) mTOR signaling in stem and progenitor cells. Development 145(1):dev152595CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tavassoly I, Parmar J, Shajahan-Haq A, Clarke R, Baumann W, Tyson J (2015) Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells. CPT Pharmacomet Syst Pharmacol 4(4):263–272CrossRefGoogle Scholar
  39. 39.
    Tavassoly I (2015) Dynamics of cell fate decision mediated by the interplay of autophagy and apoptosis in cancer cells mathematical modeling and experimental observations. Springer, New YorkGoogle Scholar
  40. 40.
    Parmar JH, Cook KL, Shajahan-Haq AN, Clarke PA, Tavassoly I, Clarke R, Tyson JJ, Baumann WT (2013) Modelling the effect of GRP78 on anti-oestrogen sensitivity and resistance in breast cancer. Interface Focus 3(4):20130012CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shaw RJ, Cantley LC (2006) Ras, PI (3) K and mTOR signalling controls tumour cell growth. Nature 441(7092):424CrossRefPubMedGoogle Scholar
  42. 42.
    Chatterjee A (2015) Control of cell cycle progression by mTORGoogle Scholar
  43. 43.
    Kim J, Guan K-L (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21(1):63CrossRefPubMedGoogle Scholar
  44. 44.
    Efeyan A, Sabatini DM (2010) mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22(2):169–176CrossRefPubMedGoogle Scholar
  45. 45.
    Rosner M, Fuchs C, Siegel N, Valli A, Hengstschläger M (2009) Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 18(17):3298–3310CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nishitani S, Horie M, Ishizaki S, Yano H (2013) Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin. PLoS One 8(11):e82346CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R (2012) TGF-β-induced activation of mTOR complex 2 drives epithelial–mesenchymal transition and cell invasion. J Cell Sci 125(5):1259–1273CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Loos B, Engelbrecht A-M (2009) Cell death: a dynamic response concept. Autophagy 5(5):590–603CrossRefPubMedGoogle Scholar
  49. 49.
    Laplante M, Sabatini DM (2012) mTOR signaling. Cold Spring Harb Perspect Biol 4(2):a011593CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485(7396):109CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Domhan S, Schwager C, Wei Q, Muschal S, Sommerer C, Morath C, Wick W, Maercker C, Debus J, Zeier M (2014) Deciphering the systems biology of mTOR inhibition by integrative transcriptome analysis. Curr Pharm Des 20(1):88–100CrossRefPubMedGoogle Scholar
  52. 52.
    Fu Y, Zheng X, Jia X, Binderiya U, Wang Y, Bao W, Bao L, Zhao K, Fu Y, Hao H (2016) A quantitative transcriptomic analysis of the physiological significance of mTOR signaling in goat fetal fibroblasts. BMC Genomics 17(1):879CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396):55CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hsieh H-J, Zhang W, Lin S-H, Yang W-H, Wang J-Z, Shen J, Zhang Y, Lu Y, Wang H, Yu J (2018) Systems biology approach reveals a link between mTORC1 and G2/M DNA damage checkpoint recovery. Nat Commun 9(1):3982CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S, Perreault C, Roux PP, Kitano H (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6(1):453CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen EY, Xu H, Gordonov S, Lim MP, Perkins MH, Ma’ayan A (2011) Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics 28(1):105–111CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sorribes I, Basu A, Brady R, Enriquez-Navas P, Feng X, Kather J, Nerlakanti N, Stephens R, Strobl M, Tavassoly I (2019) Harnessing patient-specific response dynamics to optimize evolutionary therapies for metastatic clear cell renal cell carcinoma-learning to adapt. bioRxiv, 563130.
  58. 58.
    Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J et al (2019) The 2019 mathematical oncology roadmap. Phys Biol 16(4):041005CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bibi Z, Ahmad J, Siddiqa A, Paracha RZ, Saeed T, Ali A, Janjua HA, Ullah S, Ben Abdallah E, Roux O (2017) Formal modeling of mTOR associated biological regulatory network reveals novel therapeutic strategy for the treatment of cancer. Front Physiol 8:416CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sulaimanov N, Klose M, Busch H, Boerries M (2017) Understanding the mTOR signaling pathway via mathematical modeling. Wiley Interdiscip Rev Syst Biol Med 9(4):e1379CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2(12):908CrossRefPubMedGoogle Scholar
  62. 62.
    Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9(5):055001CrossRefPubMedGoogle Scholar
  63. 63.
    Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3(1):16CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  65. 65.
    Dalle Pezze P, Sonntag AG, Thien A, Prentzell MT, Gödel M, Fischer S, Neumann-Haefelin E, Huber TB, Baumeister R, Shanley DP (2012) A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 5(217):ra25–ra25CrossRefGoogle Scholar
  66. 66.
    Sonntag AG, Dalle Pezze P, Shanley DP, Thedieck K (2012) A modelling–experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS J 279(18):3314–3328CrossRefPubMedGoogle Scholar
  67. 67.
    Kriete A, Bosl WJ, Booker G (2010) Rule-based cell systems model of aging using feedback loop motifs mediated by stress responses. PLoS Comput Biol 6(6):e1000820CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wu M, Yang X, Chan C (2009) A dynamic analysis of IRS-PKR signaling in liver cells: a discrete modeling approach. PLoS One 4(12):e8040CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dalle Pezze P, Ruf S, Sonntag AG, Langelaar-Makkinje M, Hall P, Heberle AM, Navas PR, Van Eunen K, Tölle RC, Schwarz JJ (2016) A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nat Commun 7:13254CrossRefPubMedGoogle Scholar
  70. 70.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12(1):1–222CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741CrossRefPubMedGoogle Scholar
  72. 72.
    Jung CH, Seo M, Otto NM, Kim D-H (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 7(10):1212–1221CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Blagosklonny MV (2008) Aging, stem cells, and mammalian target of rapamycin: a prospect of pharmacologic rejuvenation of aging stem cells. Rejuvenation Res 11(4):801–808CrossRefPubMedGoogle Scholar
  74. 74.
    Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRefPubMedGoogle Scholar
  76. 76.
    Tyson JJ, Novák B (2010) Functional motifs in biochemical reaction networks. Annu Rev Phys Chem 61:219–240CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Tian X-J, Zhang X-P, Liu F, Wang W (2009) Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys Rev E 80(1):011926CrossRefGoogle Scholar
  78. 78.
    Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321(5885):126–129CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nazio F, Cecconi F (2017) Autophagy up and down by outsmarting the incredible ULK. Autophagy 13(5):967–968CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lamming DW, Bar-Peled L (2019) Lysosome: the metabolic signaling hub. Traffic 20(1):27–38CrossRefPubMedGoogle Scholar
  81. 81.
    Ryzhikov M, Ehlers A, Steinberg D, Xie W, Oberlander E, Brown S, Gilmore PE, Townsend RR, Lane WS, Dolinay T (2019) Diurnal rhythms spatially and temporally organize autophagy. Cell Rep 26(7):1880–1892.e1886CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Szymańska P, Martin KR, MacKeigan JP, Hlavacek WS, Lipniacki T (2015) Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1. PLoS One 10(3):e0116550CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sachdeva UM, Thompson CB (2008) Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 4(5):581–589CrossRefPubMedGoogle Scholar
  84. 84.
    Ma D, Panda S, Lin JD (2011) Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J 30(22):4642–4651CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Nazio F, Carinci M, Valacca C, Bielli P, Strappazzon F, Antonioli M, Ciccosanti F, Rodolfo C, Campello S, Fimia GM (2016) Fine-tuning of ULK1 mRNA and protein levels is required for autophagy oscillation. J Cell Biol 215(6):841–856CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Cao R, Obrietan K (2010) mTOR signaling and entrainment of the mammalian circadian clock. Mol Cell Pharmacol 2(4):125PubMedPubMedCentralGoogle Scholar
  87. 87.
    Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC (2018) mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 14(5):e1007369CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Toledo M, Batista-Gonzalez A, Merheb E, Aoun ML, Tarabra E, Feng D, Sarparanta J, Merlo P, Botrè F, Schwartz GJ (2018) Autophagy regulates the liver clock and glucose metabolism by degrading CRY1. Cell Metab 28(2):268–281.e264CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ma D, Li S, Molusky MM, Lin JD (2012) Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol Metab 23(7):319–325CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C, Gkatzis K, Elliott DA, de Sousa Lopes SMC, Mummery CL (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7(4):394–410CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies FM (2011) Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13(4):453CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Maiese K (2017) Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 14(3):299–304PubMedPubMedCentralGoogle Scholar
  94. 94.
    Savvidis C, Koutsilieris M (2012) Circadian rhythm disruption in cancer biology. Mol Med 18(9):1249–1260CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wang S, Tsun Z-Y, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W (2015) Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    López-Otín C, Galluzzi L, Freije JM, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166(4):802–821CrossRefPubMedGoogle Scholar
  97. 97.
    Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695CrossRefPubMedGoogle Scholar
  98. 98.
    Leontieva OV, Demidenko ZN, Gudkov AV, Blagosklonny MV (2011) Elimination of proliferating cells unmasks the shift from senescence to quiescence caused by rapamycin. PLoS One 6(10):e26126CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mathiassen SG, De Zio D, Cecconi F (2017) Autophagy and the cell cycle: a complex landscape. Front Oncol 7:51CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Kriel J, Loos B (2019) The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ 26(4):640–652CrossRefPubMedGoogle Scholar
  101. 101.
    Tavassoly I, Hu Y, Zhao S, Mariottini C, Boran A, Chen Y, Li L, Tolentino RE, Jayaraman G, Goldfarb J et al (2019) Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses. Mol Oncol 13(8):1725–1743CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Zaytseva YY, Valentino JD, Gulhati P, Evers BM (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7CrossRefPubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas 2019

Authors and Affiliations

  1. 1.Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
  2. 2.Cell and Molecular Medicine Student Research Group, Faculty of MedicineShiraz University of Medical SciencesShirazIran
  3. 3.Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations