Advertisement

Review of CRISPR/Cas9 sgRNA Design Tools

  • Yingbo Cui
  • Jiaming Xu
  • Minxia Cheng
  • Xiangke Liao
  • Shaoliang Peng
Review

Abstract

The adaptive immunity system in bacteria and archaea, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-associate (CRISPR/Cas), has been adapted as a powerful gene editing tool and got a broad application in genome research field due to its ease of use and cost-effectiveness. The performance of CRISPR/Cas relies on well-designed single-guide RNA (sgRNA), so a lot of bioinformatic tools have been developed to assist the design of highly active and specific sgRNA. These tools vary in design specifications, parameters, genomes and so on. To help researchers to choose their proper tools, we reviewed various sgRNA design tools, mainly focusing on their on-target efficiency prediction model and off-target detection algorithm.

Keywords

CRISPR CRISPR/Cas9 SgRNA design On-target efficiency Off-target detection 

Notes

Acknowledgements

We would like thank to Jingyu Amy Peng and Chen-Hao Chen from Harvard T.H. Chan School of Public Health, Shenglin Mei and Jian Ma from Tongji University for their discussion about this work. This work was supported by National Key R&D Program of China 2017YFB0202602, 2017YFC1311003, 2016YFC1302500, 2016YFB0200400, 2017YFB0202104; NSFC Grants 61772543, U1435222, 61625202, 61272056; the Funds of State Key Laboratory of Chemo/Biosensing and Chemometrics; the Fundamental Research Funds for the Central Universities; and Guangdong Provincial Department of Science and Technology under grant No. 2016B090918122.

References

  1. 1.
    Koonin EV, Makarova KS (2009) CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biology Reports 1:95.  https://doi.org/10.3410/B1-95
  2. 2.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170.  https://doi.org/10.1126/science.1179555 PubMedCrossRefGoogle Scholar
  3. 3.
    Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10(5):679–686.  https://doi.org/10.4161/rna.24022 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607.  https://doi.org/10.1038/nature09886 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829 PubMedCrossRefGoogle Scholar
  6. 6.
    Cong L, Zhang F (2015) Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 1239:197–217.  https://doi.org/10.1007/978-1-4939-1862-1_10 PubMedCrossRefGoogle Scholar
  7. 7.
    Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519(7542):199–202.  https://doi.org/10.1038/nature14245 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40(1):363–383.  https://doi.org/10.1146/annurev.genet.40.110405.090451 PubMedCrossRefGoogle Scholar
  9. 9.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183.  https://doi.org/10.1016/j.cell.2013.02.022 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838.  https://doi.org/10.1038/nbt.2675 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661.  https://doi.org/10.1016/j.cell.2014.09.029 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651.  https://doi.org/10.1038/nature03556 PubMedCrossRefGoogle Scholar
  13. 13.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646.  https://doi.org/10.1038/nrg2842 PubMedCrossRefGoogle Scholar
  14. 14.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701.  https://doi.org/10.1038/nbt1398 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA (2011) Zinc finger protein-dependent and-independent contributions to the in vivo off- target activity of zinc finger nucleases. Nucleic Acids Res 39(1):381–392.  https://doi.org/10.1093/nar/gkq787 PubMedCrossRefGoogle Scholar
  16. 16.
    Chu SW, Noyes MB, Christensen RG, Pierce BG, Zhu LJ, Weng Z, Stormo GD, Wolfe SA (2012) Exploring the DNA-recognition potential of homeodomains. Genome Res 22(10):1889–1898.  https://doi.org/10.1101/gr.139014.112 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield JA, Basciotta MD, Ou J, McNulty JC, Zhu LJ, Celniker SE, Sinha S, Stormo GD, Brodsky MH, Wolfe SA (2013) Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 23(6):928–940.  https://doi.org/10.1101/gr.151472.112 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Shekar M, Venugopal MN (2017) Insight into a transcriptional adaptor zinc finger encoded by a putative protein in the white spot syndrome virus genome. Interdiscip Sci Comput Life Sci.  https://doi.org/10.1007/s12539-017-0268-x CrossRefGoogle Scholar
  19. 19.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512.  https://doi.org/10.1126/science.1178811 PubMedCrossRefGoogle Scholar
  20. 20.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501.  https://doi.org/10.1126/science.1178817 PubMedCrossRefGoogle Scholar
  21. 21.
    Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846.  https://doi.org/10.1126/science.1204094 PubMedCrossRefGoogle Scholar
  22. 22.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148.  https://doi.org/10.1038/nbt.1755 PubMedCrossRefGoogle Scholar
  23. 23.
    Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394.  https://doi.org/10.1016/j.stem.2013.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ikmi A, McKinney SA, Delventhal KM, Gibson MC (2014) TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun 5:5486.  https://doi.org/10.1038/ncomms6486 PubMedCrossRefGoogle Scholar
  25. 25.
    Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky RA, Zhang K, Cheng L, Ye Z (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15(1):12–13.  https://doi.org/10.1016/j.stem.2014.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.  https://doi.org/10.1126/science.1232033 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743.  https://doi.org/10.1038/nmeth.2532 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035.  https://doi.org/10.1534/genetics.113.152710 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110(39):15644–15649.  https://doi.org/10.1073/pnas.1313587110 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229.  https://doi.org/10.1038/nbt.2501 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683.  https://doi.org/10.1038/nbt.2661 PubMedCrossRefGoogle Scholar
  33. 33.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379.  https://doi.org/10.1016/j.cell.2013.08.022 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chakrapani V, Rasal KD, Kumar S, Mohapatra SD, Sundaray JK, Jayasankar P et al (2017) In silico analysis of nsSNPs of carp TLR22 gene affecting its binding ability with Poly I:C. Interdiscip Sci Comput Life Sci.  https://doi.org/10.1007/s12539-017-0247-2 CrossRefGoogle Scholar
  35. 35.
    Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84.  https://doi.org/10.1126/science.1246981 PubMedCrossRefGoogle Scholar
  36. 36.
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87.  https://doi.org/10.1126/science.1247005 PubMedCrossRefGoogle Scholar
  37. 37.
    Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267–273.  https://doi.org/10.1038/nbt.2800 PubMedCrossRefGoogle Scholar
  38. 38.
    Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM (2015) Identification and characterization of essential genes in the human genome. Science 350(6264):1096–1101.  https://doi.org/10.1126/science.aac7041 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M, Ohnishi S, Cooper J, Patel M, McKerrell T, Chen B, Domingues AF, Gallipoli P, Teichmann S, Ponstingl H, McDermott U, Saez-Rodriguez J, Huntly BJP, Iorio F, Pina C, Vassiliou GS, Yusa K (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell reports 17(4):1193–1205.  https://doi.org/10.1016/j.celrep.2016.09.079 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. ELife 5:e19760.  https://doi.org/10.7554/eLife.19760 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, Kost-Alimova M, Gill S, Xu H, Ali LD, Jiang G, Pantel S, Lee Y, Goodale A, Cherniack AD, Oh C, Kryukov G, Cowley GS, Garraway LA, Stegmaier K, Roberts CW, Golub TR, Meyerson M, Root DE, Tsherniak A, Hahn WC (2016) Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6(8):914–929.  https://doi.org/10.1158/2159-8290.CD-16-0154 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260.  https://doi.org/10.1016/j.cell.2015.02.038 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, Jiang G, Lubonja R, Harrington WF, Strickland M, Wu T, Hawes DC, Zhivich VA, Wyatt MR, Kalani Z, Chang JJ, Okamoto M, Stegmaier K, Golub TR, Boehm JS, Vazquez F, Root DE, Hahn WC, Tsherniak A (2017) Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat Genet 49(12):1779.  https://doi.org/10.1038/ng.3984 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yennmalli RM, Kalra S, Srivastava PA, Garlapati VK (2017) Computational tools and resources for crispr/cas 9 genome editing method. MOJ Proteom Bioinform 5(4):00164.  https://doi.org/10.15406/mojpb.2017.05.00164 CrossRefGoogle Scholar
  45. 45.
    Zhu LJ (2015) Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Front Biol 10(4):289–296.  https://doi.org/10.1007/s11515-015-1366-y CrossRefGoogle Scholar
  46. 46.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284.  https://doi.org/10.1038/nbt.2808 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826.  https://doi.org/10.1038/nbt.2623 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. ELife 2:e00471.  https://doi.org/10.7554/eLife.00471 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218.  https://doi.org/10.1186/s13059-015-0784-0 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184.  https://doi.org/10.1038/nbt.3437 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25(8):1147–1157.  https://doi.org/10.1101/gr.191452.115 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mendoza BJ, Trinh CT (2018) Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics 34(1):16–23.  https://doi.org/10.1093/bioinformatics/btx564 PubMedCrossRefGoogle Scholar
  53. 53.
    Cao Q, Ma J, Chen CH, Xu H, Chen Z, Li W, Liu XS (2017) CRISPR-FOCUS: a web server for designing focused CRISPR screening experiments. PLoS One 12(9):e0184281.  https://doi.org/10.1371/journal.pone.0184281 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Malina A, Cameron CJ, Robert F, Blanchette M, Dostie J, Pelletier J (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124.  https://doi.org/10.1038/ncomms10124 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46(3):1375–1385.  https://doi.org/10.1093/nar/gkx1268 PubMedCrossRefGoogle Scholar
  56. 56.
    Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9):823.  https://doi.org/10.1038/nmeth.3473 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6(5):902–904.  https://doi.org/10.1021/acssynbio.6b00343 PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982.  https://doi.org/10.1038/nmeth.3543 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kuan PF, Powers S, He S, Li K, Zhao X, Huang B (2017) A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinform 18(1):297.  https://doi.org/10.1186/s12859-017-1697-6 CrossRefGoogle Scholar
  60. 60.
    Ma J, Köster J, Qin Q, Hu S, Li W, Chen C, Cao Q, Wang J, Mei S, Liu Q, Xu H, Liu XS (2016) CRISPR-DO for genome-wide CRISPR design and optimization. Bioinformatics 32(21):3336–3338.  https://doi.org/10.1093/bioinformatics/btw476 PubMedCrossRefGoogle Scholar
  61. 61.
    Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42(11):7473–7485.  https://doi.org/10.1093/nar/gku402 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832.  https://doi.org/10.1038/nbt.2647 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843.  https://doi.org/10.1038/nbt.2673 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41(20):9584–9592.  https://doi.org/10.1093/nar/gkt714 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141.  https://doi.org/10.1101/gr.162339.113 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187.  https://doi.org/10.1038/nbt.3117 PubMedCrossRefGoogle Scholar
  67. 67.
    Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, Ventura A (2017) GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol 35(4):347–349.  https://doi.org/10.1038/nbt.3804 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL (2017) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. Plos One 12(4):e0176619.  https://doi.org/10.1371/journal.pone.0176619 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Singh R, Kuscu C, Quinlan A, Qi Y, Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43(18):e118.  https://doi.org/10.1093/nar/gkv575 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Graham DB, Root DE (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260.  https://doi.org/10.1186/s13059-015-0823-x PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Jakočiūnas T, Jensen MK, Keasling JD (2015) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59.  https://doi.org/10.1016/j.ymben.2015.12.003 PubMedCrossRefGoogle Scholar
  72. 72.
    Oliveros JC, Mònica F, Daniel TM, David SL, Lluis M, Pilar C et al (2016) Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267.  https://doi.org/10.1093/nar/gkw407 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhu H, Misel L, Graham M, Robinson ML, Liang C (2016) CT-Finder: a web service for CRISPR optimal target prediction and visualization. Sci Rep 6:25516.  https://doi.org/10.1038/srep25516 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239.  https://doi.org/10.1038/nbt.2508 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262.  https://doi.org/10.1038/nbt.3026 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123.  https://doi.org/10.1038/nmeth.2812 PubMedCrossRefGoogle Scholar
  77. 77.
    Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42(Web Server issue):W401–W407.  https://doi.org/10.1093/nar/gku410 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276.  https://doi.org/10.1093/nar/gkw398 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. Plos One 9(9):e108424.  https://doi.org/10.1371/journal.pone.0108424 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473.  https://doi.org/10.1093/bioinformatics/btu048 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123.  https://doi.org/10.1093/bioinformatics/btu743 PubMedCrossRefGoogle Scholar
  82. 82.
    MacPherson CR, Scherf A (2015) Flexible guide-RNA design for CRISPR applications using Protospacer Workbench. Nat Biotechnol 33(8):805.  https://doi.org/10.1038/nbt.3291 PubMedCrossRefGoogle Scholar
  83. 83.
    O’Brien A, Bailey TL (2014) GT-Scan: identifying unique genomic targets. Bioinformatics 30(18):2673–2675.  https://doi.org/10.1093/bioinformatics/btu354 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372.  https://doi.org/10.1371/journal.pone.0119372 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Heigwer F, Zhan T, Breinig M, Winter J, Brügemann D, Leible S, Boutros M (2016) CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol 17(1):55.  https://doi.org/10.1186/s13059-016-0915-2 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Housden BE, Valvezan AJ, Kelley C, Sopko R, Hu Y, Roesel C, Lin S, Buckner M, Tao R, Yilmazel B, Mohr SE, Manning BD, Perrimon N (2015) Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 8(393):rs9.  https://doi.org/10.1126/scisignal.aab3729 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162.  https://doi.org/10.1016/j.celrep.2014.09.044 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Farboud B, Meyer BJ (2015) Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199(4):959–971.  https://doi.org/10.1534/genetics.115.175166 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148.  https://doi.org/10.1186/s13059-016-1012-2 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Labaj W, Papiez A, Polanski A, Polanska J (2017) Comprehensive analysis of MILE gene expression data set advances discovery of leukaemia type and subtype biomarkers. Interdiscip Sci Comput Life Sci 9(1):24–35.  https://doi.org/10.1007/s12539-017-0216-9 CrossRefGoogle Scholar
  91. 91.
    Pei Z, Liu J, Liu M, Zhou W, Yan P, Wen S et al (2018) Risk-predicting model for incident of essential hypertension based on environmental and genetic factors with support vector machine. Interdiscip Sci Comput Life Sci.  https://doi.org/10.1007/s12539-017-0271-22016 CrossRefGoogle Scholar
  92. 92.
    Pulido-Quetglas C, Aparicio-Prat E, Arnan C, Polidori T, Hermoso T, Palumbo E, Ponomarenko J, Guigo R, Johnson AK (2017) Scalable design of paired CRISPR guide RNAs for genomic deletion. PLOS Comput Biol 13(3):e1005341.  https://doi.org/10.1371/journal.pcbi.1005341 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rahman MK, Rahman MS (2017) CRISPRpred: a flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/cas9 systems. Plos One 12(8):e0181943.  https://doi.org/10.1371/journal.pone.0181943 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hough SH, Kancleris K, Brody L, Humphryes-Kirilov N, Wolanski J, Dunaway K, Ajetunmobi A, Dillard V (2017) Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments. BMC Bioinform 18:167.  https://doi.org/10.1186/s12859-017-1581-4 CrossRefGoogle Scholar
  95. 95.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc 67(2):301–320CrossRefGoogle Scholar
  96. 96.
    Xiong Y, Xie X, Wang Y, Ma W, Liang P, Songyang Z, Dai Z (2017) pgRNAFinder: a web-based tool to design distance independent paired-gRNA. Bioinformatics 33(22):3642–3644.  https://doi.org/10.1093/bioinformatics/btx472 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chuai GH, Wang QL, Qi L (2016) In silico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol 35(1):12.  https://doi.org/10.1016/j.tibtech.2016.06.008 PubMedCrossRefGoogle Scholar
  98. 98.
    Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–451CrossRefGoogle Scholar
  99. 99.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25.  https://doi.org/10.1186/gb-2009-10-3-r25 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Brazelton VA Jr, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ (2015) A quick guide to CRISPR sgRNA design tools. Gm Crops Food 6(4):266–276.  https://doi.org/10.1080/21645698.2015.1137690 PubMedCrossRefGoogle Scholar
  102. 102.
    Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. Plos One 9(6):e100448.  https://doi.org/10.1371/journal.pone.0100448 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Abadi S, Yan WX, Amar D, Mayrose I (2017) A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol 13(10):e1005807.  https://doi.org/10.1371/journal.pcbi.1005807 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhu H, Richmond E, Liang C (2018) CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity. Bioinformatics 34(1):117–119.  https://doi.org/10.1093/bioinformatics/btx580 PubMedCrossRefGoogle Scholar
  105. 105.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759.  https://doi.org/10.1016/j.cell.2015.09.038 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42(4):2577–2590.  https://doi.org/10.1093/nar/gkt1074 PubMedCrossRefGoogle Scholar
  107. 107.
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389.  https://doi.org/10.1016/j.cell.2013.08.021 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mccaffrey J, Sibert J, Zhang B, Zhang Y, Hu W, Riethman H et al (2016) CRISPR-Cas9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res 44(2):e11-e11.  https://doi.org/10.1093/nar/gkv878 CrossRefGoogle Scholar
  109. 109.
    Chang L, Sun C, Chen X, Yang W, Zhang J, Zhang Y et al. (2017). Knocking out of human DNAH2 gene in U2OS cells by CRISPR/Cas9n double nick system. Sheng Wu Gong Cheng Xue Bao.  https://doi.org/10.13345/j.cjb.160273 CrossRefPubMedGoogle Scholar
  110. 110.
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Nat Biotechnol 32(6):569–576.  https://doi.org/10.1038/nbt.2908 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676.  https://doi.org/10.1038/nbt.2889 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683.  https://doi.org/10.1038/nbt.2916 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ComputerNational University of Defense TechnologyChangshaChina
  2. 2.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  3. 3.National Supercomputing Center in ChangshaChangshaChina

Personalised recommendations