Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold

  • Rajashekar Varma Kadumuri
  • Ramakrishna VadrevuEmail author
Original Research Article


The (βα)8/TIM barrel is one of the most common folds of known protein structures facilitating diverse catalytic functions. The fold is formed by the repetition of the basic βαβ building block in which the β-strands are followed by α-helices eight times alternating in sequence and structure. αβ and βα loops connecting α-helices to the β-strands and the β-strands to the α-helices contribute to stability and function, respectively, an inherent imposition by the TIM barrel architecture itself. In this study, αβ and βα loops from a data set of 430 non-redundant, high-resolution triosephosphate isomerase (TIM) barrels bearing sequence homology of <30% were analyzed for their amino acid propensities, sequence profiles, and positional preferences of amino acids. While the distribution of short connections is significantly higher in αβ loops, there appears to be no such preference in βα loops. Glycine, proline, lysine, and arginine tend to show greater preference to occur in αβ loops, whereas serine, threonine, cysteine, tryptophan, and histidine occur more frequently in βα loops. In addition, striking dissimilarities in sequence and positional preferences of amino acids, especially, in short, αβ and βα loops are observed. Together, the analysis suggests the role for short loops and charged residues in promoting both non-polar and polar interactions and in β strand registry. The observed diversity, perhaps, dictates the distinct role of αβ and βα loops in stability and function, respectively. In summary, the overall observations and reasoning, in addition to steering protein engineering efforts on TIM barrel design and stabilization can provide the basis for incorporating consensus loop sequences for designing independently folding βαβ modules.


Loop conformations βαβ motif Side chain–main chain hydrogen bonds TIM barrels 



The research is supported by a research Grant, 39-850/2010 (SR), from University Grants Commission, India. KRV acknowledges UGC and BITS-Pilani for the financial support in the form of research fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12539_2017_250_MOESM1_ESM.eps (251 kb)
Supplementary Fig. 1 Flowchart depicting the protocol and summary of the analysis of loops in TIM barrel proteins (EPS 250 kb)


  1. 1.
    Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261(5561):552–558CrossRefGoogle Scholar
  2. 2.
    Chothia C, Finkelstein AV (1990) The classification and origins of protein folding patterns. Annu Rev Biochem 59:1007–1039. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  3. 3.
    Petukhov M, Tatsu Y, Tamaki K, Murase S, Uekawa H, Yoshikawa S, Serrano L, Yumoto N (2009) Design of stable alpha-helices using global sequence optimization. J Pept Sci 15(5):359–365. doi: 10.1002/psc.1122 CrossRefPubMedGoogle Scholar
  4. 4.
    Fezoui Y, Weaver DL, Osterhout JJ (1994) De novo design and structural characterization of an alpha-helical hairpin peptide: a model system for the study of protein folding intermediates. Proc Natl Acad Sci USA 91(9):3675–3679CrossRefGoogle Scholar
  5. 5.
    Eisenberg D, Wilcox W, Eshita SM, Pryciak PM, Ho SP, DeGrado WF (1986) The design, synthesis, and crystallization of an alpha-helical peptide. Proteins 1(1):16–22. doi: 10.1002/prot.340010105 CrossRefPubMedGoogle Scholar
  6. 6.
    Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278(5335):82–87CrossRefGoogle Scholar
  7. 7.
    Ramirez-Alvarado M, Blanco FJ, Serrano L (1996) De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol 3(7):604–612CrossRefGoogle Scholar
  8. 8.
    Lewandowska A, Oldziej S, Liwo A, Scheraga HA (2010) beta-Hairpin-forming peptides; models of early stages of protein folding. Biophys Chem 151(1–2):1–9. doi: 10.1016/j.bpc.2010.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lahr SJ, Engel DE, Stayrook SE, Maglio O, North B, Geremia S, Lombardi A, DeGrado WF (2005) Analysis and design of turns in alpha-helical hairpins. J Mol Biol 346(5):1441–1454. doi: 10.1016/j.jmb.2004.12.016 CrossRefPubMedGoogle Scholar
  10. 10.
    Gunasekaran K, Ramakrishnan C, Balaram P (1997) Beta-hairpins in proteins revisited: lessons for de novo design. Protein Eng 10(10):1131–1141CrossRefGoogle Scholar
  11. 11.
    Brazhnikov EV, Efimov AV (2001) Structure of alpha-spiral hairpins with short connections in globular proteins. Mol Biol 35(1):100–108CrossRefGoogle Scholar
  12. 12.
    Gerstein M (1997) A structural census of genomes: comparing bacterial, eukaryotic, and archaeal genomes in terms of protein structure. J Mol Biol 274(4):562–576. doi: 10.1006/jmbi.1997.1412 CrossRefPubMedGoogle Scholar
  13. 13.
    Fezoui Y, Connolly PJ, Osterhout JJ (1997) Solution structure of alpha t alpha, a helical hairpin peptide of de novo design. Protein Sci 6(9):1869–1877. doi: 10.1002/pro.5560060907 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shao Q (2015) Folding or misfolding: the choice of beta-hairpin. J Phys Chem B 119(10):3893–3900. doi: 10.1021/jp5100654 CrossRefPubMedGoogle Scholar
  15. 15.
    Davis CM, Xiao S, Raleigh DP, Dyer RB (2012) Raising the speed limit for beta-hairpin formation. J Am Chem Soc 134(35):14476–14482. doi: 10.1021/ja3046734 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Enemark S, Rajagopalan R (2012) Turn-directed folding dynamics of beta-hairpin-forming de novo decapeptide Chignolin. Phys Chem Chem Phys PCCP 14(36):12442–12450. doi: 10.1039/c2cp40285h CrossRefPubMedGoogle Scholar
  17. 17.
    Shin HC, Merutka G, Waltho JP, Tennant LL, Dyson HJ, Wright PE (1993) Peptide models of protein folding initiation sites. 3. The G–H helical hairpin of myoglobin. Biochemistry 32(25):6356–6364CrossRefGoogle Scholar
  18. 18.
    Chakrabartty A, Baldwin RL (1995) Stability of alpha-helices. Adv Protein Chem 46:141–176CrossRefGoogle Scholar
  19. 19.
    Zilch LW, Kaleta DT, Kohtani M, Krishnan R, Jarrold MF (2007) Folding and unfolding of helix-turn-helix motifs in the gas phase. J Am Soc Mass Spectrom 18(7):1239–1248. doi: 10.1016/j.jasms.2007.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sharma GV, Thodupunuri P, Sirisha K, Basha SJ, Gurava Reddy P, Sarma AV (2014) Design and synthesis of peptides with hybrid helix-turn-helix (HTH) motif and their conformational study. J Org Chem 79(18):8614–8628. doi: 10.1021/jo501267k CrossRefPubMedGoogle Scholar
  21. 21.
    Fezoui Y, Hartley DM, Walsh DM, Selkoe DJ, Osterhout JJ, Teplow DB (2000) A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils. Nat Struct Biol 7(12):1095–1099. doi: 10.1038/81937 CrossRefPubMedGoogle Scholar
  22. 22.
    Liang H, Chen H, Fan K, Wei P, Guo X, Jin C, Zeng C, Tang C, Lai L (2009) De novo design of a beta alpha beta motif. Angew Chem 48(18):3301–3303. doi: 10.1002/anie.200805476 CrossRefGoogle Scholar
  23. 23.
    Goraj K, Renard A, Martial JA (1990) Synthesis, purification and initial structural characterization of octarellin, a de novo polypeptide modelled on the alpha/beta-barrel proteins. Protein Eng 3(4):259–266CrossRefGoogle Scholar
  24. 24.
    Beauregard M, Goraj K, Goffin V, Heremans K, Goormaghtigh E, Ruysschaert JM, Martial JA (1991) Spectroscopic investigation of structure in octarellin (a de novo protein designed to adopt the alpha/beta-barrel packing). Protein Eng 4(7):745–749CrossRefGoogle Scholar
  25. 25.
    Houbrechts A, Moreau B, Abagyan R, Mainfroid V, Preaux G, Lamproye A, Poncin A, Goormaghtigh E, Ruysschaert JM, Martial JA et al (1995) Second-generation octarellins: two new de novo (beta/alpha)8 polypeptides designed for investigating the influence of beta-residue packing on the alpha/beta-barrel structure stability. Protein Eng 8(3):249–259CrossRefGoogle Scholar
  26. 26.
    Offredi F, Dubail F, Kischel P, Sarinski K, Stern AS, Van de Weerdt C, Hoch JC, Prosperi C, Francois JM, Mayo SL, Martial JA (2003) De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. J Mol Biol 325(1):163–174CrossRefGoogle Scholar
  27. 27.
    Figueroa M, Oliveira N, Lejeune A, Kaufmann KW, Dorr BM, Matagne A, Martial JA, Meiler J, Van de Weerdt C (2013) Octarellin VI: using rosetta to design a putative artificial (beta/alpha)8 protein. PloS One 8(8):e71858. doi: 10.1371/journal.pone.0071858 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang PS, Feldmeier K, Parmeggiani F, Fernandez Velasco DA, Hocker B, Baker D (2016) De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol 12(1):29–34. doi: 10.1038/nchembio.1966 CrossRefPubMedGoogle Scholar
  29. 29.
    Nagarajan D, Deka G, Rao M (2015) Design of symmetric TIM barrel proteins from first principles. BMC Biochem 16:18. doi: 10.1186/s12858-015-0047-4 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  31. 31.
    Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:D411–D419. doi: 10.1093/nar/gkq1105 (Database issue) CrossRefPubMedGoogle Scholar
  32. 32.
    Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637. doi: 10.1002/bip.360221211 CrossRefPubMedGoogle Scholar
  33. 33.
    Chou PYFG (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148PubMedGoogle Scholar
  34. 34.
    Wang J, Feng JA (2003) Exploring the sequence patterns in the alpha-helices of proteins. Protein Eng 16(11):799–807CrossRefGoogle Scholar
  35. 35.
    Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB, Montelione GT, Baker D (2012) Principles for designing ideal protein structures. Nature 491(7423):222–227. doi: 10.1038/nature11600 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nagi ADRL (1997) An inverse correlation between loop length and stability in a four-helix-bundle protein. Fold Des 2(1):67–75CrossRefGoogle Scholar
  37. 37.
    Balasco N, Esposito L, De Simone A, Vitagliano L (2013) Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms. Protein Sci 22(7):1016–1023. doi: 10.1002/pro.2279 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Madan B, Seo SY, Lee SG (2014) Structural and sequence features of two residue turns in beta-hairpins. Proteins 82(9):1721–1733. doi: 10.1002/prot.24526 CrossRefPubMedGoogle Scholar
  39. 39.
    Costantini S, Colonna G, Facchiano AM (2006) Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem Biophys Res Commun 342(2):441–451. doi: 10.1016/j.bbrc.2006.01.159 CrossRefPubMedGoogle Scholar
  40. 40.
    Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324(1):105–121CrossRefGoogle Scholar
  41. 41.
    Bogin O, Peretz M, Hacham Y, Korkhin Y, Frolow F, Kalb AJ, Burstein Y (1998) Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Protein Sci 7(5):1156–1163. doi: 10.1002/pro.5560070509 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li C, Heatwole J, Soelaiman S, Shoham M (1999) Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability. Proteins 37(4):619–627CrossRefGoogle Scholar
  43. 43.
    Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 269(1):142–153. doi: 10.1006/jmbi.1997.1018 CrossRefPubMedGoogle Scholar
  44. 44.
    Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84(19):6663–6667CrossRefGoogle Scholar
  45. 45.
    Trevino SR, Schaefer S, Scholtz JM, Pace CN (2007) Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol 373(1):211–218. doi: 10.1016/j.jmb.2007.07.061 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hardy F, Vriend G, Veltman OR, van der Vinne B, Venema G, Eijsink VG (1993) Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 317(1–2):89–92CrossRefGoogle Scholar
  47. 47.
    Kimura S, Kanaya S, Nakamura H (1992) Thermostabilization of Escherichia coli ribonuclease HI by replacing left-handed helical Lys95 with Gly or Asn. J Biol Chem 267(31):22014–22017PubMedGoogle Scholar
  48. 48.
    Stites WE, Meeker AK, Shortle D (1994) Evidence for strained interactions between side-chains and the polypeptide backbone. J Mol Biol 235(1):27–32CrossRefGoogle Scholar
  49. 49.
    Masumoto K, Ueda T, Motoshima H, Imoto T (2000) Relationship between local structure and stability in hen egg white lysozyme mutant with alanine substituted for glycine. Protein Eng 13(10):691–695CrossRefGoogle Scholar
  50. 50.
    Takano K, Yamagata Y, Yutani K (2001) Role of amino acid residues in left-handed helical conformation for the conformational stability of a protein. Proteins 45(3):274–280CrossRefGoogle Scholar
  51. 51.
    Yang X, Vadrevu R, Wu Y, Matthews CR (2007) Long-range side-chain-main-chain interactions play crucial roles in stabilizing the (betaalpha)8 barrel motif of the alpha subunit of tryptophan synthase. Protein Science 16(7):1398–1409. doi: 10.1110/ps.062704507 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yang X, Kathuria SV, Vadrevu R, Matthews CR (2009) Betaalpha-hairpin clamps brace betaalphabeta modules and can make substantive contributions to the stability of TIM barrel proteins. PloS One 4(9):e7179. doi: 10.1371/journal.pone.0007179 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi: 10.1101/gr.849004 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bordo D, Argos P (1994) The role of side-chain hydrogen bonds in the formation and stabilization of secondary structure in soluble proteins. J Mol Biol 243(3):504–519. doi: 10.1006/jmbi.1994.1676 CrossRefPubMedGoogle Scholar
  55. 55.
    Doig AJ, MacArthur MW, Stapley BJ, Thornton JM (1997) Structures of N-termini of helices in proteins. Protein Sci 6(1):147–155. doi: 10.1002/pro.5560060117 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Aurora R, Rose GD (1998) Helix capping. Protein Sci 7(1):21–38. doi: 10.1002/pro.5560070103 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rajashekar Varma Kadumuri
    • 1
  • Ramakrishna Vadrevu
    • 1
    Email author
  1. 1.Department of Biological SciencesBirla Institute of Technology and Science-PilaniHyderabadIndia

Personalised recommendations