Skip to main content
Log in

Studies of the Interaction of Influenza Virus RNA Polymerase PAN with Endonuclease Inhibitors

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Influenza virus is a major causative agent of respiratory viral infections, and RNA polymerase catalyzes its replication and transcription activities in infected cell nuclei. Since it is highly conserved in all virus strains, RNA polymerase becomes a key target of anti-influenza virus agents. Although experimental studies have revealed the good inhibitory activity of endonuclease inhibitors to RNA polymerase, the mechanism is still unclear. In this study, the docking and molecular dynamics simulations have been performed to explore the interaction of three kinds of endonuclease inhibitors with the subunit (PAN) of RNA polymerase. Our calculations indicate that all these endonuclease inhibitors can bind to the binding pocket of PAN, in which the electronegative oxygen atoms of the inhibitors form a chelated structure with the two Mn2+ cations of the active center. The most important interaction between these inhibitors and PAN is electrostatic interaction. The electron density of the chelate oxygen atoms determines the magnitude of the electrostatic energy, and the chelated structure and orientation of inhibitors depend largely on the distance between the chelate oxygen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doshi P, Jefferson T (2016) Neuraminidase inhibitors and influenza infection. JAMA Intern Med 176(3):415–416

    Article  PubMed  Google Scholar 

  2. Monto AS, Fleming DM, Henry D, Groot RD, Makela M, Klein T, Elliott M, Keene ON, Man CY (1999) Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenza A and B virus infections. J Infect Dis 180:254–261

    Article  CAS  PubMed  Google Scholar 

  3. Treanor JJ, Hayden FG, Vrooman PS, Barbarash R, Bettis R, Riff D, Singh S, Kinnersley N, WaRd P, Mills RG (2000) Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza. J Am Med Assoc 283:1016–1024

    Article  CAS  Google Scholar 

  4. Hayden FG, Couch RB (1992) Clinical and epidemiological importance of influenza A viruses resistant to amantadine and rimantadine. Rev Med Virol 2:89–96

    Article  Google Scholar 

  5. Yang ZW, Wu XM, Yang G, Zu YG, Zhou LJ (2012) Understanding the chiral recognitions between neuraminidases and inhibitors: studies with DFT, docking, and MD methods. Int J Quantum Chem 112:909–921

    Article  CAS  Google Scholar 

  6. De Jong MD, Thanh TT, Khanh TH, Hien VM, Smith G, Chau NV, Cam BV, Qui PT, Ha DQ, Guan Y, Phil M, Hien TT, Farrar J (2005) Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353:2667–2672

    Article  PubMed  Google Scholar 

  7. Monto AS, McKimm-Breschkin JL, Macken C, Hampson AW, Hay A, Klimov A, Masato T, Webster RG, Aymard M, Hayden FG, Zambon M (2006) Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother 50:2395–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yen HL, Ilyushina NA, Salomon R, Hoffmann E, Webster RG, Govorkova EA (2007) Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. J Virol 81:12418–12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carcia V, Aris-Brosou S (2013) Comparative dynamics and distribution of influenza drug resistance acquisition to protein M2 and neuraminidase inhibitors. Mol Biol Evol 31(2):355–363

    Google Scholar 

  10. Ruigrok RW, Crepin T, Hart DJ, Cusack S (2010) Towards an atomic resolution understanding of the influenza virus replication machinery. Curr Opin Struct Biol 20:104–113

    Article  CAS  PubMed  Google Scholar 

  11. Datta K, Wolkerstorfer A, Szolar OHJ, Cusack S, Klumpp K (2013) Characterization of PA-N terminal domain of influenza A polymerase reveals sequence specific RNA cleavage. Nucl Acids Res 41:8289–8299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selnick HG, Ponticello GS, Baldwin JJ (1995) Dioxobutanoic acid derivatives as inhibitors of influenza endonuclease. Google Patents

  13. Selnick HG, Baldwin JJ, Ponticello GS (1997) Dioxobutanoic acid derivatives as inhibitors of influenza endonuclease. Google Patents

  14. Hensens OD, Goetz MA, Liesch JM, Zink DL, Raghoobar SL, Helm GL, Singh SB (1995) Isolation and structure of flutimide, a novel endonuclease inhibitor of influenza virus. Tetrahedron Lett 36:2005–2008

    Article  CAS  Google Scholar 

  15. Singh SB (1995) A novel endonuclease inhibitor of influenza virus. Tetrahedron Lett 36:2009–2012

    Article  CAS  Google Scholar 

  16. Cianci C, Chung T, Meanwell N, Putz H, Hagen M, Colonno RJ, Krystal M (1996) Identification of N-hydroxamic acid and N-hydroxy-imide compounds that inhibit the influenza virus polymerase. Antivir Chem Chemother 7:353–360

    Article  CAS  Google Scholar 

  17. Yuan PW, Bartlam M, Lou ZY, Chen SD, Zhou J, He XJ, Lv ZY, Ge RW, Li XM, Deng T, Fodor E, Rao ZH, Liu YF (2009) Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature 458:909–914

    Article  CAS  PubMed  Google Scholar 

  18. Dias A, Bouvier D, Crepin T, Mccarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok R (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914–918

    Article  CAS  PubMed  Google Scholar 

  19. Crepin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok R (2010) Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol 84:9096–9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doan L, Handa B, Roberts NA, Klumpp K (1999) Metal ion catalysis of RNA cleavage by the influenza virus endonuclease. Biochemistry 38:5612–5619

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa Y, Fujii S (2011) Binding mode prediction and inhibitor design of anti-influenza virus diketo acids targeting metalloenzyme RNA polymerase by molecular docking. Bioinformation 6:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C 02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  24. Chen D, Menche G, Power TD, Sower L, Peterson JW, Schein CH (2007) Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins Struct Funct Bioinf 67:593–605

    Article  CAS  Google Scholar 

  25. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  PubMed  Google Scholar 

  27. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  28. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65:712–725

    Article  CAS  Google Scholar 

  29. Wang J, Wang W, Kollman PA, Case DA (2001) Antechamber: an accessory software package for molecular mechanical calculations. J Am Chem Soc 222:U403–U403

    Google Scholar 

  30. Hess B, Bekker H, Berendsen HJC (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  31. Kees KL, Caggiano TJ, Steiner KE, Fitzgerald JJ Jr, Kates MJ, Christos TE, Kulishoff JM, Moore RD, McCaleb ML (1995) Studies on new acidic azoles as glucose-lowering agents in obese, diabetic db/db mice. J Med Chem 38:617–628

    Article  CAS  PubMed  Google Scholar 

  32. Tomassini J, Selnick H, Davies M, Armstrong ME, Baldwin J, Bourgeois M, Hastings J, Hazuda D, Lewis L, McClements W (1994) Inhibition of cap (m7G pppXm)-dependent endonuclease of influenza virus by 4-substituted 2, 4-dioxobutanoic acid compounds. Agents Chemother 38:2827–2837

    Article  CAS  Google Scholar 

  33. Tomassini J, Davies M, Hastings J, Lingham R, Mojena M, Raghoobar SL, Singh SB, Tkacz JS, Goetz MA (1996) A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob Agents Chemother 40:1189–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Parkes KEB, Ermert P, Fassler J, Ives J, Martin JA, Merrett JH, Obrecht D, Williams G, Klumpp K (2003) Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors. J Med Chem 46:1153–1164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2015CL017) and Doctoral Program in Shandong Province (Grant No. 2011BSB01105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-hua Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Lh., Cao, Xr. Studies of the Interaction of Influenza Virus RNA Polymerase PAN with Endonuclease Inhibitors. Interdiscip Sci Comput Life Sci 10, 430–437 (2018). https://doi.org/10.1007/s12539-017-0239-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-017-0239-2

Keywords

Navigation