Skip to main content

Advertisement

Log in

Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 Proteins—Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An Insilico study

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The Human Chemokine (C–C motif) ligand 19 (CCL19) protein plays a major role in rheumatic and autoimmune diseases. The 3D models of the CCL19 and its receptor CCR7 are generated using homology modeling and are validated using standard computational protocols. Disulfide bridges identified in 3D model of CCL19 protein give extra stability to the overall protein structure. The active site region of protein CCL19, containing N-terminal amino acid residues (Gly22 to Leu31), is predicted using in silico techniques. Protein–protein docking studies are carried out between the CCL19 and CCR7 proteins to analyse the active site binding interactions of CCL19. The binding domain of CCL19 is subjected to structure-based virtual screening of small molecule databases, and identified several bioisosteric ligand molecules having pyrrolidone and piperidone pharmacophores. The prioritized ligands with acceptable ADME properties are reported as new leads for the design of potential CCL19 antagonists for rheumatic and autoimmune disease therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cho J, Gregersen PK (2011) Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med 365:1612–1623

    Article  CAS  PubMed  Google Scholar 

  2. Rioux JD, Abbas AK (2005) Paths to understanding the genetic basis of autoimmune disease. Nature 435:584–589

    Article  CAS  PubMed  Google Scholar 

  3. Kronenberg M, Rudensky A (2005) Regulation of immunity by self-reactive T cells. Nature 435:598–604

    Article  CAS  PubMed  Google Scholar 

  4. Comerford I, Kara EE, McKenzie DR, McColl SR (2014) Advances in understanding the pathogenesis of autoimmune disorders: focus on chemokines and lymphocyte trafficking. Br J Haematol 164:329–341

    Article  CAS  PubMed  Google Scholar 

  5. Johnston A, Gudjonsson JE, Sigmundsdottir H, Ludviksson BR, Valdimarsson H (2005) The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol 114:154–163

    Article  CAS  PubMed  Google Scholar 

  6. Fukushima R, Kanamori S, Hirashiba M, Hishikawa A, Muranaka RI, Kaneto M, Nakamura K, Kato I (2007) Teratogenicity study of the dihydroorotate-dehydrogenase inhibitor and protein tyrosine kinase inhibitor Leflunomide in mice. Reprod Toxicol 24:310–316

    Article  CAS  PubMed  Google Scholar 

  7. Dall’Era M, Davis J (2004) CTLA4Ig: a novel inhibitor of costimulation. Lupus 13:372–376

    Article  PubMed  Google Scholar 

  8. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581

    Article  CAS  PubMed  Google Scholar 

  9. Jones G, Sebba A, Gu J, Lowenstein MB, Calvo A, Gomez-Reino JJ, Siri DA, Tomsic M, Alecock E, Woodworth T, Genovese MC (2010) Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann Rheum Dis 69:88–96

    Article  CAS  PubMed  Google Scholar 

  10. Braun J, McHugh N, Singh A, Wajdula JS, Sato R (2007) Improvement in patient-reported outcomes for patients with ankylosing spondylitis treated with etanercept 50 mg once-weekly and 25 mg twice-weekly. Rheumatology (Oxford) 46:999–1004

    Article  CAS  Google Scholar 

  11. Kaushik VV, Moots RJ (2005) CDP-870 (certolizumab) in rheumatoid arthritis. Expert Opin Biol Ther 5:601–606

    Article  CAS  PubMed  Google Scholar 

  12. Kay J, Rahman MU (2010) Golimumab: A novel human anti-TNF-alpha monoclonal antibody for the treatment of rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. Core Evid 4:159–170

    PubMed  PubMed Central  Google Scholar 

  13. Md Yusof MY, Emery P (2013) Targeting interleukin-6 in rheumatoid arthritis. Drugs 73:341–356

    Article  CAS  PubMed  Google Scholar 

  14. Emery P, Gottenberg JE, Rubbert-Roth A, Sarzi-Puttini P, Choquette D, Taboada VM, Barile-Fabris L, Moots RJ, Ostor A, Andrianakos A, Gemmen E, Mpofu C, Chung C, Gylvin LH, Finckh A (2015) Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann Rheum Dis 74:979–984

    Article  CAS  PubMed  Google Scholar 

  15. White GE, Iqbal AJ, Greaves DR (2013) CC chemokine receptors and chronic inflammation–therapeutic opportunities and pharmacological challenges. Pharmacol Rev 65:47–89

    Article  CAS  PubMed  Google Scholar 

  16. Buckland J (2014) Rheumatoid arthritis: citrullination alters the inflammatory properties of chemokines in inflammatory arthritis. Nat Rev Rheumatol 10:446

    Article  PubMed  Google Scholar 

  17. Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    Article  PubMed  Google Scholar 

  18. Bardi G, Lipp M, Baggiolini M, Loetscher P (2001) The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur J Immunol 31:3291–3297

    Article  CAS  PubMed  Google Scholar 

  19. Schneider K, Potter KG, Ware CF (2004) Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 202:49–66

    Article  CAS  PubMed  Google Scholar 

  20. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29:1617–1625

    Article  CAS  PubMed  Google Scholar 

  21. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–288

    Article  CAS  PubMed  Google Scholar 

  22. Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, Munk A, Forster R (2011) Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 12:879–887

    Article  CAS  PubMed  Google Scholar 

  23. Okada T, Cyster JG (2007) CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J Immunol 178:2973–2978

    Article  CAS  PubMed  Google Scholar 

  24. Ott TR, Lio FM, Olshefski D, Liu XJ, Struthers RS, Ling N (2004) Determinants of high-affinity binding and receptor activation in the N-terminus of CCL-19 (MIP-3 beta). BioChemistry 43:3670–3678

    Article  CAS  PubMed  Google Scholar 

  25. Sallusto F, Baggiolini M (2008) Chemokines and leukocyte traffic. Nat Immunol 9:949–952

    Article  CAS  PubMed  Google Scholar 

  26. Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222

    Article  CAS  PubMed  Google Scholar 

  27. Pickens SR, Chamberlain ND, Volin MV, Pope RM, Mandelin AM 2nd, Shahrara S (2011) Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum 63:914–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamashita M, Iwama N, Date F, Shibata N, Miki H, Yamauchi K, Sawai T, Sato S, Takahashi T, Ono M (2009) Macrophages participate in lymphangiogenesis in idiopathic diffuse alveolar damage through CCL19-CCR7 signal. Hum Pathol 40:1553–1563

    Article  CAS  PubMed  Google Scholar 

  29. Corsiero E, Bombardieri M, Manzo A, Bugatti S, Uguccioni M, Pitzalis C (2012) Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases. Immunol Lett 145:62–67

    Article  CAS  PubMed  Google Scholar 

  30. Bose F, Petti L, Diani M, Moscheni C, Molteni S, Altomare A, Rossi RL, Talarico D, Fontana R, Russo V, Altomare G, Reali E (2013) Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am J Pathol 183:413–421

    Article  CAS  PubMed  Google Scholar 

  31. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  CAS  PubMed  Google Scholar 

  32. Canete JD, Santiago B, Cantaert T, Sanmarti R, Palacin A, Celis R, Graell E, Gil-Torregrosa B, Baeten D, Pablos JL (2007) Ectopic lymphoid neogenesis in psoriatic arthritis. Ann Rheum Dis 66:720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  CAS  PubMed  Google Scholar 

  34. Demoor T, Bracke KR, Vermaelen KY, Dupont L, Joos GF, Brusselle GG (2009) CCR7 modulates pulmonary and lymph node inflammatory responses in cigarette smoke-exposed mice. J Immunol 183:8186–8194

    Article  CAS  PubMed  Google Scholar 

  35. Ramatenki V, Potlapally SR, Dumpati RK, Vadija R, Vuruputuri U (2015) Homology modeling and virtual screening of ubiquitin conjugation enzyme E2A for designing a novel selective antagonist against cancer. J Recept Signal Transduct Res 35:536–549

    Article  CAS  PubMed  Google Scholar 

  36. Dumpati R, Dulapalli R, Kondagari B, Ramatenki V, Vellanki S, Vadija R and Vuruputuri U (2016) Suppressor of cytokine signalling-3 as a drug target for type 2 diabetes mellitus: a structure-guided approach. ChemistrySelect 1:2502–2514.

    Article  CAS  Google Scholar 

  37. Malkhed V, Mustyala KK, Potlapally SR, Vuruputuri U (2014) Identification of novel leads applying in silico studies for mycobacterium multidrug resistant (MMR) protein. J Biomol Struct Dyn 32:1889–1906

    Article  CAS  PubMed  Google Scholar 

  38. Vadija R, Mustyala KK, Nambigari N, Dulapalli R, Dumpati RK, Ramatenki V, Vellanki SP, Vuruputuri U (2016) Homology modeling and virtual screening studies of FGF-7 protein-a structure-based approach to design new molecules against tumor angiogenesis. J Chem Biol 9:69–78

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juretic D, Zoranic L, Zucic D (2002) Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comput Sci 42:620–632

    Article  CAS  PubMed  Google Scholar 

  41. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  46. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  48. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  49. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  PubMed  Google Scholar 

  51. Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 69:146–148

    Article  CAS  PubMed  Google Scholar 

  52. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Accelrys Software Inc., (2012) Accelrys Discovery studio Visualizer v 3.5.0.12158. Accelrys Software Inc., San Diego

    Google Scholar 

  54. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  CAS  PubMed  Google Scholar 

  55. Backman TW, Cao Y, Girke T (2011) ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res 39:W486–W491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao Y, Jiang T, Girke T (2008) A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics 24:366–374

    Article  Google Scholar 

  57. Chen IJ, Foloppe N (2010) Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: comparison to programs MOE and catalyst. J Chem Inf Model 50:822–839

    Article  CAS  PubMed  Google Scholar 

  58. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  59. Ekins S, Honeycutt JD, Metz JT (2010) Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov Today 15:451–460

    Article  CAS  PubMed  Google Scholar 

  60. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10:136

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68

    Article  CAS  PubMed  Google Scholar 

  62. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  63. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  64. Clore GM, Gronenborn AM (1995) Three-dimensional structures of alpha and beta chemokines. FASEB J 9:57–62

    Article  CAS  PubMed  Google Scholar 

  65. Ott TR, Pahuja A, Nickolls SA, Alleva DG, Struthers RS (2004) Identification of CC chemokine receptor 7 residues important for receptor activation. J Biol Chem 279:42383–42392

    Article  CAS  PubMed  Google Scholar 

  66. Kuloglu ES, McCaslin DR, Kitabwalla M, Pauza CD, Markley JL, Volkman BF (2001) Monomeric solution structure of the prototypical ‘C’ chemokine lymphotactin. BioChemistry 40:12486–12496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ott TR, Lio FM, Olshefski D, Liu XJ, Ling N, Struthers RS (2006) The N-terminal domain of CCL21 reconstitutes high affinity binding, G protein activation, and chemotactic activity, to the C-terminal domain of CCL19. Biochem Biophys Res Commun 348:1089–1093

    Article  CAS  PubMed  Google Scholar 

  68. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190

    Article  CAS  PubMed  Google Scholar 

  69. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I (1997) Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16:6996–7007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Hayre M, Salanga CL, Handel TM, Allen SJ (2008) Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J 409:635–649

    Article  PubMed  Google Scholar 

  71. Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B, Moser B, Baggiolini M, Sykes BD (1995) Structure-activity relationships of chemokines. J Leukoc Biol 57:703–711

    Article  CAS  PubMed  Google Scholar 

  72. Christopherson K 2nd, Hromas R (2001) Chemokine regulation of normal and pathologic immune responses. Stem Cells 19:388–396

    Article  CAS  PubMed  Google Scholar 

  73. Baysal C, Atilgan AR (2001) Elucidating the structural mechanisms for biological activity of the chemokine family. Proteins 43:150–160

    Article  CAS  PubMed  Google Scholar 

  74. Lill MA, Danielson ML (2011) Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des 25:13–19

    Article  CAS  PubMed  Google Scholar 

  75. Bosshard HR, Marti DN, Jelesarov I (2004) Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit 17:1–16

    Article  CAS  PubMed  Google Scholar 

  76. Momen-Roknabadi A, Sadeghi M, Pezeshk H, Marashi SA (2008) Impact of residue accessible surface area on the prediction of protein secondary structures. BMC Bioinform 9:357

    Article  Google Scholar 

  77. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  78. Ramatenki V, Dumpati R, Vadija R, Vellanki S, Potlapally SR, Rondla R, Vuruputuri U (2016) Targeting the ubiquitin-conjugating enzyme E2D4 for cancer drug discovery—a structure-based approach. J Chem Biol. doi:10.1007/s12154-016-0164-6

    Google Scholar 

  79. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  80. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  81. Vugmeyster Y, Harrold J, Xu X (2012) Absorption, distribution, metabolism, and excretion (ADME) studies of biotherapeutics for autoimmune and inflammatory conditions. AAPS J 14:714–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aronov AM (2005) Predictive in silico modeling for hERG channel blockers. Drug Discov Today 10:149–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors SV, RD, BK, NN, RV, VR, and RKD are thankful to The Principal and The Head, Department of Chemistry, University College of Science, Osmania University, Hyderabad for providing facilities to carry out this work. SV and RKD are grateful to University Grants Commission-New Delhi for Junior Research Fellowship (JRF) under Basic Scientific Research (BSR), Research Fellowship in Sciences for Meritorious Students Scheme (RFSMS) (File no. 1043/A/2/Chem/BSR/2013–2014), and VR is greatly thankful to Council of Scientific and Industrial Research-India (File No. 09/132(0821)/2012-EMR-I) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Vuruputuri.

Ethics declarations

Conflict of interest

The authors of the manuscript entitled “Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 proteins—Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An Insilico Study” have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12539_2017_212_MOESM1_ESM.tif

ProSA energy plots of CCL19 and CCR7 proteins. The ProSA energy profile graphs (Fig 1a and b) show that most of the amino acids in the CCL19 and CCR7 proteins fall in negative ProSA energy regions (TIF 20958 KB)

12539_2017_212_MOESM2_ESM.tif

Transmembrane domain prediction for CCR7 protein using SPLIT4.0 and NCBI servers. Secondary structure prediction for CCR7 protein obtained using the method of preference functions for proteins in the SPLIT 4.0 Server (Fig 2a). Red line, represents the transmembrane helix preference (THM index); blue line, beta preference (BET index); grey line, modified hydrophobic moment index (INDA index); violet boxes (below abscissa), predicted transmembrane helix position (DIG index). Seven transmembrane domains of CCR7 protein, predicted by BLAST Server, are represented as grey bar (Fig 2b) (TIF 9662 KB)

12539_2017_212_MOESM3_ESM.tif

Interactions between the CCL19 protein and the docked ligand with the top prioritized glide score. Docked molecules obtained after virtual screening studies. Consistent binding interactions are observed at Asp 28 and Leu 31 residues which are found in DCCL motif of the CCL19 protein (TIF 18334 KB)

Supplementary material 4 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vellanki, S.P., Dulapalli, R., Kondagari, B. et al. Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 Proteins—Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An Insilico study. Interdiscip Sci Comput Life Sci 10, 346–366 (2018). https://doi.org/10.1007/s12539-017-0212-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-017-0212-0

Keywords

Navigation