Advertisement

An Improved Protein Surface Extraction Method Using Rotating Cylinder Probe

  • Kalpana Singh
  • Tapobrata LahiriEmail author
Original Research Article
  • 72 Downloads

Abstract

For extraction of information on binding sites of a protein, the commonly known geometry-based methods utilize the corresponding PDB file to extract its surface as a first step. Finally, the surface is used to find the binding site atoms. As shown in this paper work, since none of the mostly used surface extraction methods can retrieve a sizeable percentage of the binding site atoms, the scope of development of a better method remains. In this direction, this paper presents a new benchmarking criteria based on utilization of binding site information to compare performance of these surface extraction methods. Also, a new surface extraction method is introduced based on the use of a rotating cylinder probe adapting from the work of Weisel et al. (Chem Cent J 1:7–23, 2007. doi: 10.1186/1752-153X-1-7). The result of the new method shows a significant improvement of performance in comparison to the existing methods.

Keywords

Protein surface Comparison of extracted surfaces Binding sites qualifying surfaces Rotating cylinder probe Surface extraction method 

Notes

Acknowledgements

The authors gratefully acknowledge the grant-in-aid received from Indian Council of Medical Research (Project Sanction Letter No. 52/8/2005-BMS, dated February 4, 2010) to Tapobrata Lahiri to pursue this paper work.

References

  1. 1.
    Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15:359–363. doi: 10.1016/S1093-3263(98)00002-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Pettit FK, Bowie JU (1999) Protein surface roughness and small molecular binding sites. J Mol Biol 285:1377–1382. doi: 10.1006/jmbi.1998.2411 CrossRefPubMedGoogle Scholar
  3. 3.
    Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem A, Aflalo C, Vakser I (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. PNAS 89:2195–3199. doi: 10.1073/pnas.89.6.2195 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jones S, Thornton J (1996) Principles of protein–protein interactions. PNAS 93:13–20. doi: 10.1073/pnas.93.1.1310 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Heifetz A, Katchalski-Katzir E, Eisenstein M (2002) Electrostatics in protein–protein docking. Protein Sci 11:571–587. doi: 10.1110/ps.26002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Via A, Ferrè F, Brannetti B, Helmer-Citterich M (2000) Protein surface similarities: a survey of methods to describe and compare protein surfaces. Cell Mol Life Sci 57:1970–1977. doi: 10.1007/PL00000677 CrossRefPubMedGoogle Scholar
  7. 7.
    Singh T, Biswas D, Jayaram B (2011) AADS—an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51:2515–2527. doi: 10.1021/ci200193z CrossRefPubMedGoogle Scholar
  8. 8.
    Peters KP, Fauck J, Frommel C (1996) The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol 256:201–13. doi: 10.1006/jmbi.1996.0077
  9. 9.
    Huang B, Schroeder M (2006) LIGSITEcsc: predicting protein binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19. doi: 10.1186/1472-6807-6-19 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400. doi: 10.1016/0022-2836(71)90324-X CrossRefPubMedGoogle Scholar
  11. 11.
    Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558. doi: 10.1107/S0021889883010985 CrossRefGoogle Scholar
  12. 12.
    Bates PW, Wei GW, Zhao S (2008) Minimal molecular surfaces and their applications. J Comput Chem 29:380–391. doi: 10.1002/jcc.20796 CrossRefPubMedGoogle Scholar
  13. 13.
    Rosen M, Lin SL, Wolfson H, Nussinov R (1998) Molecular shape comparisons in searches for active sites and functional similarity. Protein Eng 11:263–277. doi: 10.1093/protein/11.4.263 CrossRefPubMedGoogle Scholar
  14. 14.
    Ringe D (1995) What makes a binding site a binding site? Curr Opin Struct Biol 5:825–829. doi: 10.1016/0959-440X(95)80017-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Connolly ML (1993) The Molecular Surface Package. J Mol Graph 11:139–141. doi: 10.1016/0263-7855(93)87010-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Tsodikov OV, Record MT Jr, Sergeev YV (2002) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23:600–609. doi: 10.1002/jcc.10061 CrossRefPubMedGoogle Scholar
  17. 17.
    Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7–23. doi: 10.1186/1752-153X-1-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Singha S, Lahiri T, Dasgupta AK, Chakrabarti P (2006) Structural classification of protein using surface roughness index. OJB 7:74–84. doi: 10.6026/97320630008984 Google Scholar
  19. 19.
    Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26:46–52. doi: 10.1093/bioinformatics/btp599 CrossRefPubMedGoogle Scholar
  20. 20.
    Marsh JA (2013) Buried and accessible surface area control intrinsic protein flexibility. J Mol Biol 425:3250–3263. doi: 10.1016/j.jmb.2013.06.019 CrossRefPubMedGoogle Scholar
  21. 21.
    Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401. doi: 10.1023/A:1008124202956 CrossRefPubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Applied ScienceIndian Institute of Information TechnologyAllahabadIndia

Personalised recommendations