Zhang J, Landry MP, Barone PW et al (2013) Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat Nanotechnol 8:959–968. doi:10.1038/nnano.2013.236
Article
PubMed
PubMed Central
CAS
Google Scholar
Breiten B, Lockett MR, Sherman W et al (2013) Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. J Am Chem Soc 135:15579–15584. doi:10.1021/ja4075776
Article
PubMed
CAS
Google Scholar
Lehn JM (1992) Supramolecular chemistry: from molecular recognition towards molecular information processing and self-organization. Mater Sci Forum 91–93:100. doi:10.4028/www.scientific.net/MSF.91-93.100
Article
Google Scholar
Alberts B, Johnson A, Lewis J et al (2002) Protein Function. In: Molecular Biology of the Cell, 4th edn. Garland Science, New York
Persch E, Dumele O, Diederich F (2015) Molecular recognition in chemical and biological systems. Angew Chemie Int Ed. doi:10.1002/anie.201408487
Article
Google Scholar
Fersht AR (1987) The hydrogen bond in molecular recognition. Trends Biochem Sci 12:301–304
Article
CAS
Google Scholar
Zhao GJ, Han KL (2007) Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J Phys Chem A 111:2469–2474. doi:10.1021/jp068420j
Article
PubMed
CAS
Google Scholar
Zhao J, Chen J, Cui Y et al (2015) A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline. Phys Chem Chem Phys 17:1142–1150. doi:10.1039/c4cp04135f
Article
PubMed
CAS
Google Scholar
Zhao G-J, Han K-L (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413. doi:10.1021/ar200135h
Article
PubMed
CAS
Google Scholar
Zhao J, Chen J, Liu J, Hoffmann MR (2015) Competitive excited-state single or double proton transfer mechanisms for bis-2,5-(2-benzoxazolyl)-hydroquinone and its derivatives. Phys Chem Chem Phys 17:11990–11999. doi:10.1039/c4cp05651e
Article
PubMed
CAS
Google Scholar
Harada A, Kobayashi R, Takashima Y et al (2010) Recognition. Nat Chem 3:34–37. doi:10.1038/nchem.893
Article
PubMed
CAS
Google Scholar
Zhao GJ, Han KL (2008) Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening. Chem Phys Chem 9:1842–1846. doi:10.1002/cphc.200800371
Article
PubMed
CAS
Google Scholar
Gillis EP, Eastman KJ, Hill MD et al (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58:8315–8359. doi:10.1021/acs.jmedchem.5b00258
Article
PubMed
CAS
Google Scholar
Leroux FR, Manteau B, Vors J-P, Pazenok S (2008) Trifluoromethyl ethers–synthesis and properties of an unusual substituent. Beilstein J Org Chem 4:13. doi:10.3762/bjoc.4.13
Article
PubMed
PubMed Central
CAS
Google Scholar
Shah P, Westwell AD (2007) The role of fluorine in medicinal chemistry. J Enzyme Inhib Med Chem 22:527–540. doi:10.1080/14756360701425014
Article
PubMed
CAS
Google Scholar
Fluorine in medicinal chemistry and chemical biology—Wiley Online Library. http://onlinelibrary.wiley.com/book/10.1002/9781444312096. Accessed 15 Feb 2016
Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330. doi:10.1039/b610213c
Article
PubMed
CAS
Google Scholar
Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1:777–791. doi:10.4155/fmc.09.65
Article
PubMed
CAS
Google Scholar
Garcia-Diaz M, Bebenek K (2007) Multiple functions of DNA polymerases. CRC Crit Rev Plant Sci 26:105–122. doi:10.1080/07352680701252817
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu Y, Liu Y, Xu Z et al (2012) Halogen bonding for rational drug design and new drug discovery. Expert Opin Drug Discov 7:375–383. doi:10.1517/17460441.2012.678829
Article
PubMed
CAS
Google Scholar
Lopachin RM, Gavin T, Decaprio A, Barber DS (2012) Application of the hard and soft, acids and bases (HSAB) theory to toxicant–target interactions. Chem Res Toxicol 25:239–251. doi:10.1021/tx2003257
Article
PubMed
CAS
Google Scholar
Albà M (2001) Replicative DNA polymerases. Genome Biol 2:REVIEWS3002
Article
PubMed
PubMed Central
Google Scholar
Lehman IR, Bessman MJ, Simms ES, Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 233:163–170
PubMed
CAS
Google Scholar
Ollis DL, Brick P, Hamlin R et al (1985) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766. doi:10.1038/313762a0
Article
PubMed
CAS
Google Scholar
Allen WJ, Li Y, Waksman G (2010) Bacterial DNA Polymerase I. In: eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0001043.pub2
Klenow H, Henningsen I (1970) Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci USA 65:168–175
Article
PubMed
CAS
Google Scholar
Derbyshire V, Grindley ND, Joyce CM (1991) The 3′-5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J 10:17–24
PubMed
PubMed Central
CAS
Article
Google Scholar
Bernad A, Blanco L, Lázaro J et al (1989) A conserved 3′ → 5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228. doi:10.1016/0092-8674(89)90883-0
Article
PubMed
CAS
Google Scholar
Bhate K, Williams HC (2013) Epidemiology of acne vulgaris. Br J Dermatol 168:474–485. doi:10.1111/bjd.12149
Article
PubMed
CAS
Google Scholar
Williams HC, Dellavalle RP, Garner S (2012) Acne vulgaris. Lancet 379:361–372. doi:10.1016/S0140-6736(11)60321-8
Article
PubMed
Google Scholar
Goodman G (2006) Acne and acne scarring: the case for active and early intervention. Aust Fam Physician 35:503–504
PubMed
Google Scholar
Thappa D, Adityan B, Kumari R (2009) Scoring systems in acne vulgaris. Indian J Dermatol Venereol Leprol 75:323. doi:10.4103/0378-6323.51258
Article
PubMed
Google Scholar
James WD (2005) Clinical practice. Acne N Engl J Med 352:1463–1472. doi:10.1056/NEJMcp033487
Article
PubMed
CAS
Google Scholar
Lolis MS, Bowe WP, Shalita AR (2009) Acne and systemic disease. Med Clin North Am 93:1161–1181. doi:10.1016/j.mcna.2009.08.008
Article
PubMed
CAS
Google Scholar
Titus S, Hodge J (2012) Diagnosis and treatment of acne. Am Fam Physician 86:734–740
PubMed
Google Scholar
Fitton A, Goa KL (1991) Azelaic acid. A review of its pharmacological properties and therapeutic efficacy in acne and hyperpigmentary skin disorders. Drugs 41:780–798
Article
PubMed
CAS
Google Scholar
Azelaic acid (On the skin)—National Library of Medicine—PubMed Health. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0009168/?report=details. Accessed 16 Feb 2016
Del Rosso JQ, Baum EW, Draelos ZD et al (2006) Azelaic acid gel 15%: clinical versatility in the treatment of rosacea. Cutis 78:6–19
PubMed
Google Scholar
Breathnach AS (1999) Azelaic acid: potential as a general antitumoural agent. Med Hypotheses 52:221–226. doi:10.1054/mehy.1997.0647
Article
PubMed
CAS
Google Scholar
Graupe K, Cunliffe WJ, Gollnick HP, Zaumseil RP (1996) Efficacy and safety of topical azelaic acid (20 percent cream): an overview of results from European clinical trials and experimental reports. Cutis 57:20–35
PubMed
CAS
Google Scholar
Bek-Thomsen M, Lomholt HB, Kilian M (2008) Acne is not associated with yet-uncultured bacteria. J Clin Microbiol 46:3355–3360. doi:10.1128/JCM.00799-08
Article
PubMed
PubMed Central
CAS
Google Scholar
Leibl H, Stingl G, Pehamberger H et al (1985) Inhibition of DNA synthesis of melanoma cells by azelaic acid. J Invest Dermatol 85:417–422. doi:10.1111/1523-1747.ep12277084
Article
PubMed
CAS
Google Scholar
Bojar RA, Holland KT, Cunliffe WJ (1991) The in vitro antimicrobial effects of zelaic acid upon Propionibacterium acnes strain P37. J Antimicrob Chemother 28:843–853
Article
PubMed
CAS
Google Scholar
Gleeson MP, Gleeson D (2009) QM/MM calculations in drug discovery: a useful method for studying binding phenomena? J Chem Inf Model 49:670–677. doi:10.1021/ci800419j
Article
PubMed
CAS
Google Scholar
Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098
Article
CAS
Google Scholar
Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785
Article
CAS
Google Scholar
Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian Inc Wallingford CT 34, Wallingford CT. doi:10.1159/000348293
Ray SS, Bonanno JB, Rajashankar KR et al (2002) Cocrystal structures of diaminopimelate decarboxylase: mechanism, evolution, and inhibition of an antibiotic resistance accessory factor. Structure 10:1499–1508. doi:10.1016/S0969-2126(02)00880-8
Article
PubMed
CAS
Google Scholar
Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Int J Quantum Chem. doi:10.1002/qua.560470107
Article
Google Scholar
Pearson RG (1995) The HSAB principle—more quantitative aspects. Inorg Chim Acta 240:93–98. doi:10.1016/0020-1693(95)04648-8
Article
CAS
Google Scholar
Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci USA 83:8440–8441. doi:10.1073/pnas.83.22.8440
Article
PubMed
CAS
Google Scholar
Brautigam CA, Sun S, Piccirilli JA, Steitz TA (1999) Structures of normal single-stranded DNA and deoxyribo-3′-S-phosphorothiolates bound to the 3′-5′ exonucleolytic active site of DNA polymerase I from Escherichia coli. Biochemistry 38:696–704. doi:10.1021/bi981537g
Article
PubMed
CAS
Google Scholar
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PDBVIEWER: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505
Article
PubMed
CAS
Google Scholar
Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118. doi:10.1093/nar/gkl282
Article
CAS
Google Scholar
DeLano WL (2002) The PyMOL molecular graphics system. Schrödinger LLC wwwpymolorg Version 1.:http://www.pymol.org. doi: citeulike-article-id:240061
Trott O, Olson AJ (2010) Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334
PubMed
PubMed Central
CAS
Article
Google Scholar
Morris GM, Lim-Wilby M (2008) Molecular docking. Methods Mol Biol 443:365–382. doi:10.1007/978-1-59745-177-2_19
Article
PubMed
CAS
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina. J Comput Chem 31:445–461. doi:10.1002/jcc.21334
CAS
Article
Google Scholar
Updated L (2013) Accelrys discovery studio 4.0 product release document
Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. doi:10.1021/ci200227u
Article
PubMed
CAS
Google Scholar
Cheng F, Li W, Zhou Y et al (2012) AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105. doi:10.1021/ci300367a
Article
PubMed
CAS
Google Scholar
Garbett NC, Chaires JB (2012) Thermodynamic studies for drug design and screening. Expert Opin Drug Discov 7:299–314. doi:10.1517/17460441.2012.666235
Article
PubMed
PubMed Central
CAS
Google Scholar
Lien EJ, Guo Z-R, Li R-L, Su C-T (1982) Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies. J Pharm Sci 71:641–655. doi:10.1002/jps.2600710611
Article
PubMed
CAS
Google Scholar
Lien EJ, Guo ZR, Li RL, Su CT (1982) Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure–activity relationship studies. J Pharm Sci 71:641–655
Article
PubMed
CAS
Google Scholar
Rahman A, Hoque MM, Khan MAK et al (2016) Non-covalent interactions involving halogenated derivatives of capecitabine and thymidylate synthase: a computational approach. Springerplus 5:1–18. doi:10.1186/s40064-016-1844-y
Article
CAS
Google Scholar
Saleh MA, Solayman M, Hoque MM et al (2016) Inhibition of DNA topoisomerase type IIα (TOP2A) by Mitoxantrone and its halogenated derivatives: a combined density functional and molecular docking study. Biomed Res Int 2016:12
Article
CAS
Google Scholar
Heinz H, Suter UW (2004) Atomic charges for classical simulations of polar systems. J Phys Chem B 108:18341–18352. doi:10.1021/jp048142t
Article
CAS
Google Scholar
Gross KC, Seybold PG, Hadad CM (2002) Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. Int J Quantum Chem 90:445–458. doi:10.1002/qua.10108
Article
CAS
Google Scholar
Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722. doi:10.1063/1.1700523
Article
CAS
Google Scholar
Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107. doi:10.1063/1.2196882
Article
PubMed
CAS
Google Scholar
Parr RG, Zhou Z (1993) Absolute hardness : unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters. Acc Chem Res 26:256–258. doi:10.1021/ar00029a005
Article
CAS
Google Scholar
Aihara J (1999) Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495. doi:10.1021/jp990092i
Article
CAS
Google Scholar
Manolopoulos DE, May JC, Down SE (1991) Theoretical studies of the fullerenes: c34 to C70. Chem Phys Lett 181:105–111. doi:10.1016/0009-2614(91)90340-F
Article
CAS
Google Scholar
Aihara J (2000) Correlation found between the HOMO–LUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Phys Chem Chem Phys 2:3121–3125. doi:10.1039/b002601h
Article
CAS
Google Scholar
Gelb MH, Svaren JP, Abeles RH (1985) Fluoro ketone inhibitors of hydrolytic enzymes. Biochemistry 24:1813–1817. doi:10.1021/bi00329a001
Article
PubMed
CAS
Google Scholar
Nair HK, Quinn DM (1993) M-alkyl alpha, alpha, alpha-trifluoroacetophenones—a new class of potent transition-state analog inhibitors of acetylcholinesterase. Bioorg Med Chem Lett 3:2619–2622. doi:10.1016/S0960-894x(01)80727-7
Article
CAS
Google Scholar
Veale CA, Bernstein PR, Bohnert CM et al (1997) Orally active trifluoromethyl ketone inhibitors of human leukocyte elastase. J Med Chem 40:3173–3181. doi:10.1021/jm970250z
Article
PubMed
CAS
Google Scholar
Furuya T, Kamlet AS, Ritter T (2011) Catalysis for fluorination and trifluoromethylation. Nature 473:470–477. doi:10.1038/nature10108
Article
PubMed
PubMed Central
CAS
Google Scholar
McClinton MA, McClinton DA (1992) Trifluoromethylations and related reactions in organic chemistry. Tetrahedron 48:6555–6666. doi:10.1016/S0040-4020(01)80011-9
Article
CAS
Google Scholar
Ji Y, Brueckl T, Baxter RD et al (2011) Innate C–H trifluoromethylation of heterocycles. Proc Natl Acad Sci USA 108:14411–14415. doi:10.1073/pnas.1109059108
Article
PubMed
Google Scholar
Lishchynskyi A, Novikov MA, Martin E et al (2013) Trifluoromethylation of aryl and heteroaryl halides with fluoroform-derived CuCF3: scope, limitations, and mechanistic features. J Org Chem 78:11126–11146. doi:10.1021/jo401423h
Article
PubMed
CAS
Google Scholar
Sarwar MG, Ajami D, Theodorakopoulos G et al (2013) Amplified halogen bonding in a small space. J Am Chem Soc 135:13672–13675. doi:10.1021/ja407815t
Article
PubMed
CAS
Google Scholar
Sarwar MG, Dragisic B, Salsberg LJ et al (2010) Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. J Am Chem Soc 132:1646–1653. doi:10.1021/ja9086352
Article
PubMed
CAS
Google Scholar
Beale TM, Chudzinski MG, Sarwar MG, Taylor MS (2013) Halogen bonding in solution: thermodynamics and applications. Chem Soc Rev. doi:10.1039/c2cs35213c
PubMed
Article
Google Scholar
Hoque MM, Halim MA, Rahman MM et al (2013) Synthesis and structural insights of substituted 2-iodoacetanilides and 2-iodoanilines. J Mol Struct 1054–1055:367–374. doi:10.1016/j.molstruc.2013.10.011
Article
CAS
Google Scholar
Sarwar MG, Dragisić B, Dimitrijević E, Taylor MS (2013) Halogen bonding between anions and iodoperfluoroorganics: solution-phase thermodynamics and multidentate-receptor design. Chem A Eur J 19:2050–2058. doi:10.1002/chem.201202689
Article
CAS
Google Scholar
Sarwar MG, Dragisic B, Sagoo S, Taylor MS (2010) A tridentate halogen-bonding receptor for tight binding of halide anions. Angew Chem Int Ed Engl 49:1674–1677. doi:10.1002/anie.200906488
Article
PubMed
CAS
Google Scholar
Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084. doi:10.1021/jm100112j
Article
PubMed
PubMed Central
CAS
Google Scholar
Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chemie Int Ed 43:5310–5324. doi:10.1002/anie.200301739
Article
CAS
Google Scholar
Zhurkin VB, Tolstorukov MY, Xu F et al (2005) Sequence-dependent variability of B-DNA. DNA conform transcription. Springer, Boston, pp 18–34
Chapter
Google Scholar
Wade RC, Goodford PJ (1989) The role of hydrogen-bonds in drug binding. Prog Clin Biol Res 289:433–444
PubMed
CAS
Google Scholar
Zhao GJ, Liu JY, Zhou LC, Han KL (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111:8940–8945. doi:10.1021/jp0734530
Article
PubMed
CAS
Google Scholar
Zhao G-J, Han K-L (2008) Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys J 94:38–46. doi:10.1529/biophysj.107.113738
Article
PubMed
CAS
Google Scholar
Lee HR, Helquist SA, Kool ET, Johnson KA (2008) Importance of hydrogen bonding for efficiency and specificity of the human mitochondrial DNA polymerase. J Biol Chem 283:14402–14410. doi:10.1074/jbc.M705007200
Article
PubMed
PubMed Central
CAS
Google Scholar
Derbyshire V, Freemont PS, Sanderson MR et al (1988) Genetic and crystallographic studies of the 3′,5′-exonucleolytic site of DNA polymerase I. Science 240:199–201
Article
PubMed
CAS
Google Scholar
Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) Cubanecarboxylic acids. Crystal engineering considerations and the role of C-H···O hydrogen bonds in determining O-H···O networks. J Am Chem Soc 121:1936–1944. doi:10.1021/ja981967u
Article
CAS
Google Scholar
Meadows ES, De Wall SL, Barbour LJ et al (2000) Structural and dynamic evidence for C − H···O hydrogen bonding in lariat ethers: implications for protein structure. J Am Chem Soc 122:3325–3335. doi:10.1021/ja9940672
Article
CAS
Google Scholar
Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 2013:27–34. doi:10.4137/DTI.S12519
CAS
Article
Google Scholar
Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469. doi:10.1038/nature04710
Article
PubMed
CAS
Google Scholar