In Silico Analysis of the Structure of Fungal Fructooligosaccharides-Synthesizing Enzymes

  • Sergio Olarte-Avellaneda
  • Alexander Rodríguez-López
  • Juan David Patiño
  • Carlos J. Alméciga-Díaz
  • Oscar F. Sánchez
Original Research Article


Fructooligosaccharides (FOS) are prebiotics commonly manufactured using fungal fructosyltransferases (FTases) or β-fructofuranosidases. Several reports have attempted to optimize FOS production by changing operational conditions. Nevertheless, there is a lack of information related to the molecular enzyme–substrate interaction. In this study, we present an in silico evaluation of the interactions between substrates (i.e., glucose, sucrose, GF2, GF3, and GF4) and native FOS-synthesizing enzymes from fungi, with reported FOS production yield. In addition, a molecular dynamic simulation was conducted to assess the stability of these interactions. Six fungal enzymes with reported data of FOS production were selected: sucrose–sucrose 1-fructosyltransferase from A. foetidus (GenBank No. CAA04131); intracellular invertase from A. niger (GenBank No. ABB59679); extracellular invertase from A. niger (GenBank No. ABB59678); β-fructofuranidase from A. japonicus ATCC 20611 (GenBank No. BAB67771); fructosyltransferase from A. oryzae N74 (GenBank No. ACZ48670); and fructosyltransferase from A. japonicus (PDB ID 3LF7). These enzymes shared an identity between 15 and 96 %, but have a highly conserved folding, and the characteristic FTases domains. Docking results showed that these enzymes also share a similar protein–ligand interaction profile. It was observed that the production yield of total FOS correlated with the sum of affinity energies for GF2, GF3, and GF4. Finally, we present the first molecular dynamic simulation for FOS and fungal FOS-synthesizing enzymes, showing that the protein–ligand interaction does not induce significant changes on the enzyme stability. Overall, these results represent valuable information to continue understanding the FOS synthesis process by fungal FOS-synthesizing enzymes, and they can have a significant impact toward the improvement in their catalytic properties and the synthesis of specific FOS.


Fructooligosaccharides Fructosyltransferases Molecular docking Molecular dynamics Aspergillus 



This work was supported in part by The Administrative Department of Science, Technology and Innovation COLCIENCIAS (Colombia; Grant 120356933427). We thank Alexander Herrera at the High Performance Computing Center—ZINE—of Pontificia Universidad Javeriana, for his assistance during docking and molecular dynamics simulations.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12539_2016_154_MOESM1_ESM.pdf (5.7 mb)
Supplementary material 1 (PDF 5796 kb)


  1. 1.
    van Loo J (2004) Prebiotics promote good health: the basis, the potential, and the emerging evidence. J Clin Gastroenterol 38:S70–S75CrossRefPubMedGoogle Scholar
  2. 2.
    Guio F, Rodríguez M, Alméciga-Díaz CJ, Sánchez OF (2009) Recent trends in fructooligosaccharides production. Recent Pat Food Nutr Agric 1:221–230CrossRefPubMedGoogle Scholar
  3. 3.
    Sangeetha P, Ramesh M, Prapullaa S (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457CrossRefGoogle Scholar
  4. 4.
    Yun J (1996) Fructooligosaccharides—occurrence, preparation, and application. Enzyme Microb Technol 19:110–117CrossRefGoogle Scholar
  5. 5.
    Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137:2493S–2502SCrossRefPubMedGoogle Scholar
  6. 6.
    Almeciga-Diaz CJ, Gutierrez AM, Bahamon I, Rodriguez A, Rodriguez MA, Sanchez OF (2011) Computational analysis of the fructosyltransferase enzymes in plants, fungi and bacteria. Gene 484:26–34CrossRefPubMedGoogle Scholar
  7. 7.
    Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W (2009) Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot 60:727–740CrossRefPubMedGoogle Scholar
  8. 8.
    Nobre C, Teixeira JA, Rodrigues LR (2015) New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Crit Rev Food Sci Nutr 55:1444–1455CrossRefPubMedGoogle Scholar
  9. 9.
    Yuan X-L, Goosen C, Kools H, van der Maarel M, van den Hondel C, Dijkhuizen L, Ram AFJ (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073CrossRefPubMedGoogle Scholar
  10. 10.
    Chuankhayan P, Hsieh CY, Huang YC, Hsieh YY, Guan HH, Hsieh YC, Tien YC, Chen CD, Chiang CM, Chen CJ (2010) Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. J Biol Chem 285:23251–23264CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rodriguez A, Sanchez O, Alméciga-Díaz CJ (2010) Gene cloning and enzyme structure modeling of the Aspergillus oryzae N74 fructosyltransferase. Mol Biol Rep 38:1151–1161CrossRefPubMedGoogle Scholar
  12. 12.
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  13. 13.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Laskowski RA, Chistyakov VV, Thornton JM (2005) PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res 33:D266–D268CrossRefPubMedGoogle Scholar
  16. 16.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  17. 17.
    Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64:559–574CrossRefPubMedGoogle Scholar
  20. 20.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  21. 21.
    Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786CrossRefPubMedGoogle Scholar
  22. 22.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van dSD, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363CrossRefPubMedGoogle Scholar
  24. 24.
    Bali V, Panesar PS, Bera MB, Panesar R (2015) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490CrossRefPubMedGoogle Scholar
  25. 25.
    Rehm J, Willmitzer L, Heyer AG (1998) Production of 1-kestose in transgenic yeast expressing a fructosyltransferase from Aspergillus foetidus. J Bacteriol 180:1305–1310PubMedPubMedCentralGoogle Scholar
  26. 26.
    Goosen C, Yuan X-L, van Munster J, Ram A, van der Maarel M, Dijkhuizen L (2007) Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity. Eukaryot Cell 6:674–681CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Olarte-Avellaneda S, Rodríguez-López A, Alméciga-Díaz CJ, Barrera LA (2014) Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an update in genotype-phenotype correlation for Morquio A. Mol Biol Rep 41:7073–7088CrossRefPubMedGoogle Scholar
  28. 28.
    Linde D, Macias I, Fernandez-Arrojo L, Plou FJ, Jimenez A, Fernandez-Lobato M (2009) Molecular and biochemical characterization of a beta-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 75:1065–1073CrossRefPubMedGoogle Scholar
  29. 29.
    Alvaro-Benito M, De AM, Portillo F, Sanz-Aparicio J, Fernandez-Lobato M (2010) New insights into the fructosyltransferase activity of Schwanniomyces occidentalis ss-fructofuranosidase, emerging from nonconventional codon usage and directed mutation. Appl Environ Microbiol 76:7491–7499CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alvaro-Benito M, Polo A, Gonzalez B, Fernandez-Lobato M, Sanz-Aparicio J (2010) Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding. J Biol Chem 285:13930–13941CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lammens W, Le RK, Yuan S, Vergauwen R, Rabijns A, Van LA, Strelkov SV, Van dEW (2012) Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Plant J 70:205–219CrossRefPubMedGoogle Scholar
  32. 32.
    Trollope KM, Nieuwoudt HH, Görgens JF, Volschenk H (2014) Screening a random mutagenesis library of a fungal β-fructofuranosidase using FT-MIR ATR spectroscopy and multivariate analysis. Appl Microbiol Biotechnol 98:4063–4073CrossRefPubMedGoogle Scholar
  33. 33.
    L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84CrossRefPubMedGoogle Scholar
  34. 34.
    Yanai K, Nakane A, Kawate A, Hirayama M (2001) Molecular cloning and characterization of the fructooligosaccharide-producing b-fructofuranosidase gene from Aspergillus niger ATCC20611. Biosci Biotechnol Biochem 65:766–773CrossRefPubMedGoogle Scholar
  35. 35.
    Sánchez O, Guio F, Garcia D, Silva E, Caicedo L (2008) Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food Bioprod Process 86:109–115CrossRefGoogle Scholar
  36. 36.
    Sheu D, Lio P, Chen S, Lin C, Duan K (2001) Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnol Lett 23:1499–1503CrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Clinical Bacteriology Program, School of Health SciencesUniversidad Colegio Mayor de CundinamarcaBogotáColombia
  2. 2.Chemical Department, School of SciencePontificia Universidad JaverianaBogotáColombia
  3. 3.Institute for the Study of Inborn Errors of MetabolismPontificia Universidad JaverianaBogotáColombia
  4. 4.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations