Unwinding the Novel Genes Involved in the Differentiation of Embryonic Stem Cells into Insulin-Producing Cells: A Network-Based Approach

  • T. Femlin Blessia
  • Sachidanand Singh
  • J. Jannet Vennila
Original Research Article

Abstract

Diabetes is one of the main causes of death in the world. Diabetes is marked by high blood glucose levels and develops when the body doesn’t produce enough insulin or is not able to use insulin effectively, or both. Type I diabetes is a chronic sickness caused by lack of insulin due to the autoimmune destruction of pancreatic insulin-producing beta cells. Research on permanent cure for diabetes is in progress with several remarkable findings in the past few decades among which stem cell therapy has turned out to be a promising way to cure diabetes. Stem cells have the remarkable potential to differentiate into glucose-responsive beta cells through controlled differentiation protocols. Discovering novel targets that could potentially influence the differentiation to specific cell type will help in disease therapy. The present work focuses on finding novel genes or transcription factors involved in the human embryonic stem cell differentiation into insulin-producing beta cells using network biology approach. The interactome of 321 genes and their associated molecules involved in human embryonic stem cell differentiation into beta cells was constructed, which includes 1937 nodes and 8105 edges with a scale-free topology. Pathway analysis for the hubs obtained through MCODE revealed that four highly interactive hubs were relevant to embryonic stem cell differentiation into insulin-producing cells. Their role in different pathways and stem cell differentiation was studied. Centrality parameters were applied to identify the potential controllers of the differentiation processes: BMP4, SALL4, ZIC1, NTS, RNF2, FOXO1, AKT1 and GATA4. This type of approach gives an insight to identify potential genes/transcription factors which may play influential role in many complex biological processes.

Keywords

Diabetes Embryonic stem cells Network biology Interactome Topological parameters 

Supplementary material

12539_2016_148_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 22 kb)

References

  1. 1.
    Dean L, McEntyre J (2004) The genetic landscape of diabetes. Chapter 1, introduction to diabetes. Bethesda (MD): National Center for Biotechnology Information (US). http://www.ncbi.nlm.nih.gov/books/NBK1671/
  2. 2.
    Van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118CrossRefPubMedGoogle Scholar
  3. 3.
    Arya AK, Tripathi K (2012) Stem cells: basics and therapeutic applications. In: Barh D, Blum K, Madigan MA (eds) Omics: biomedical perspectives and applications. CRC Press, Boca Raton, pp 77–100Google Scholar
  4. 4.
    Sachs DH, Bonner-Weir S (2000) New islets from old. Nat Med 6:250–251CrossRefPubMedGoogle Scholar
  5. 5.
    Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697CrossRefPubMedGoogle Scholar
  6. 6.
    Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl) 120:771–776Google Scholar
  7. 7.
    Soejitno A, Prayudi PKA (2011) The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2:197–210CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI (2012) Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 29:14–23CrossRefPubMedGoogle Scholar
  9. 9.
    Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, Lin CS (2009) Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 18:1399–1406CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brinda KV, Vishveshwara S (2005) Oligomeric protein structure networks: insights into protein-protein interactions. BMC Bioinform 6:296CrossRefGoogle Scholar
  11. 11.
    Ma’ayan A (2011) Introduction to network analysis in systems biology. Sci Signal 4:tr5CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liew CG (2010) Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols. Rev Diabet Stud 7:82–92CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database Issue):D808–D815CrossRefPubMedGoogle Scholar
  14. 14.
    Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–4957CrossRefPubMedGoogle Scholar
  15. 15.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21:1010–1024CrossRefPubMedGoogle Scholar
  17. 17.
    Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2CrossRefGoogle Scholar
  18. 18.
    Goldstein ML, Morris SA, Yen GG (2004) Problems with fitting to the power-law distribution. Eur Phys J B 41:255–258CrossRefGoogle Scholar
  19. 19.
    Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42CrossRefPubMedGoogle Scholar
  20. 20.
    Scardoni, G., Laudanna, C. 2012. Centralities based analysis of complex networks. In: Zhang Y (ed) New frontiers in graph theory, InTech, China, pp 323–348Google Scholar
  21. 21.
    Yoon J, Blumer A, Lee K (2006) An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics 22:3106–3108CrossRefPubMedGoogle Scholar
  22. 22.
    Talavera-Adame D, Wu G, He Y, Ng TT, Gupta A, Kurtovic S, Hwang JY, Farkas DL, Dafoe DC (2011) Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. Stem Cell Rev 7:532–543CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liang QL, Mo Z, Li XF, Wang XX, Li RM (2013) Pdx1 protein induces human embryonic stem cells into the pancreatic endocrine lineage. Cell Biol Int 37:2–10CrossRefPubMedGoogle Scholar
  24. 24.
    Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326CrossRefPubMedGoogle Scholar
  25. 25.
    Reece J, Campbell N (2002) Biology. Benjamin Cummings, San FranciscoGoogle Scholar
  26. 26.
    Koblas T, Leontovyč I, Zacharovová K, Berková Z, Kříž J, Girman P, Saudek F (2012) Activation of the Jak/Stat signalling pathway by leukaemia inhibitory factor stimulates trans-differentiation of human non-endocrine pancreatic cells into insulin-producing cells. Folia Biol (Praha) 58:98–105Google Scholar
  27. 27.
    McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38CrossRefPubMedGoogle Scholar
  28. 28.
    Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA (2009) Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4:348–358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, Lim R, Sun W, Colman A, Dunn NR (2007) Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16:561–578CrossRefPubMedGoogle Scholar
  30. 30.
    Teo AK, Ali Y, Wong KY, Chipperfield H, Sadasivam A, Poobalan Y, Tan EK, Wang ST, Abraham S, Tsuneyoshi N, Stanton LW, Dunn NR (2012) Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 30:631–642CrossRefPubMedGoogle Scholar
  31. 31.
    Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881CrossRefPubMedGoogle Scholar
  32. 32.
    Bakre MM, Hoi A, Mong JC, Koh YY, Wong KY, Stanton LW (2007) Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J Biol Chem 282:31703–31712CrossRefPubMedGoogle Scholar
  33. 33.
    Lee DH, Chung HM (2011) Differentiation into endoderm lineage: pancreatic differentiation from embryonic stem cells. Int J Stem Cells 4:35–42CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YH, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRefPubMedGoogle Scholar
  35. 35.
    Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Stein R, Magnuson MA, Stein R (2010) MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes 59:2530–2539CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRefPubMedGoogle Scholar
  37. 37.
    Sui L, Bouwens L, Mfopou JK (2013) Signaling pathways during maintenance and definitive endoderm differentiation of embryonic stem cells. Int J Dev Biol 57:1–12CrossRefPubMedGoogle Scholar
  38. 38.
    Wang Y, Lanzoni G, Carpino G, Cui CB, Dominguez-Bendala J, Wauthier E, Cardinale V, Oikawa T, Pileggi A, Gerber D, Furth ME, Alvaro D, Gaudio E, Inverardi L, Reid LM (2013) Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis. Stem Cells 31:1966–1979CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ungrin MD, Clarke G, Yin T, Niebrugge S, Nostro MC, Sarangi F, Wood G, Keller G, Zandstra PW (2012) Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnol Bioeng 109:853–866CrossRefPubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • T. Femlin Blessia
    • 1
  • Sachidanand Singh
    • 1
  • J. Jannet Vennila
    • 2
  1. 1.Department of Bioinformatics, School of Biotechnology and Health SciencesKarunya UniversityCoimbatoreIndia
  2. 2.Department of Biotechnology, School of Biotechnology and Health SciencesKarunya UniversityCoimbatoreIndia

Personalised recommendations