Design, Synthesis, Spectral Analysis, In Vitro Anticancer Evaluation and Molecular Docking Studies of Some Fluorescent 4-Amino-2, 3-Dimethyl-1-Phenyl-3-Pyrazolin-5-One, Ampyrone Derivatives

  • D. PremnathEmail author
  • Israel V. M. V. Enoch
  • P. Mosae Selvakumar
  • M. Indiraleka
  • J. Jannet Vennila
Original Research Article


The commenced work deals with the synthesis, characterization and evaluation of biological activities of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one. The synthesis was done by the condensation of aromatic acid chlorides with 4-aminoantipyrine. The structures of synthesized derivatives were elucidated using IR, Mass, 1H NMR and 13C NMR spectroscopy, and their UV–Visible and fluorescence properties were studied. The compounds showed significant dual fluorescence. Molecular docking was used to understand the small molecule–receptor protein interaction. The derivatives were screened for their in vitro cytotoxic activity against the reference drug pazopanib on human cervical cancer cell line (SiHa) using MTT assay.


4-Aminoantipyrine Fluorescence spectroscopy Molecular docking Cytotoxic activity 



The authors thank the management and the authorities of Karunya University, Coimbatore, for their kind support, constant encouragement, and providing laboratory facility. We extend our thanks to SAIF, IIT, Madras, India, and IISC, Bangalore, India, for recording NMR and mass spectra.

Compliance with Ethical Standards

Conflict of interests

The authors declare that there is no conflict of interests.

Supplementary material

12539_2015_138_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1539 kb)


  1. 1.
    Kneller Robert (2010) The importance of new companies for drug discovery: origins of a decade of new drugs. Nat Rev Drug Discov 9(11):867–882CrossRefPubMedGoogle Scholar
  2. 2.
    Vasil’eva VP et al (1983) Synthesis and biological activity of acyl derivatives of 4-aminoantipyrine. Pharm Chem J 17(9):633–635CrossRefGoogle Scholar
  3. 3.
    Mohanram I, Meshram J (2014) Synthesis and biological activities of 4-aminoantipyrine derivatives derived from betti-type reaction. Int Sch Res NoticesGoogle Scholar
  4. 4.
    Hosler James et al (1980) Topical application of lindane cream (Kwell) and antipyrine metabolism. J Invest Dermatol 74(1):51–53CrossRefPubMedGoogle Scholar
  5. 5.
    Selvakumar PM, Suresh E, Subramanian PS (2007) Synthesis, spectral characterization and structural investigation on some 4-aminoantipyrine containing Schiff base Cu (II) complexes and their molecular association. Polyhedron 26(4):749–756CrossRefGoogle Scholar
  6. 6.
    Li Hua-Nan et al (2009) Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology 257(1):80–85CrossRefPubMedGoogle Scholar
  7. 7.
    Nair RakeshS et al (2014) The molecular response of vanadium complexes of nicotinoyl hydrazone in cervical cancers—a possible interference with HPV oncogenic markers. Life Sci 116(2):90–97CrossRefPubMedGoogle Scholar
  8. 8.
    Jensen PernilleT et al (2003) Longitudinal study of sexual function and vaginal changes after radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 56(4):937–949CrossRefPubMedGoogle Scholar
  9. 9.
    de Oliveira MauricioCB et al (2005) Hydrolytic protein cleavage mediated by unusual mononuclear copper (II) complexes: X-ray structures and solution studies. Inorg Chem 44(4):921–929CrossRefPubMedGoogle Scholar
  10. 10.
    Burdulene D, Palaima A, Stumbryavichyute Z (1999) Synthesis and antiinflammatory activity of 4-aminoantipyrine derivatives of succinamides. Pharm Chem J 33(4):191–193CrossRefGoogle Scholar
  11. 11.
    Turan-Zitouni G, Sivaci M, Kilic FS, Erol K (2001) Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity. Eur J Med Chem 36(7–8):685–689CrossRefPubMedGoogle Scholar
  12. 12.
    Alama MS, Choib JH, Lee DU (2012) Synthesis of novel Schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorg Med Chem 20:4103–4108CrossRefGoogle Scholar
  13. 13.
    Himaja M, Rai K, Anish KV, Ramana MV, Karigar AA (2012) Synthesis and evaluation of anthelmintic and insecticidal activities of 4-amino-antipyrine derivatives of amino acids and peptides. J Pharm Sci Innov 1:67–70Google Scholar
  14. 14.
    Sigroha S, Narasimhan B, Kumar P et al (2012) Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Med Chem Res 21:3863–3875CrossRefGoogle Scholar
  15. 15.
    Vaghasiya YK, Nair R, Soni M, Baluja S, Chanda S (2004) Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. J Serb Chem Soc 69(12):991–998CrossRefGoogle Scholar
  16. 16.
    Joseph J, Nagashri K, Boomadevi Janaki G (2012) Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur J Med Chem 49:151–163CrossRefPubMedGoogle Scholar
  17. 17.
    Ramesh E, Alshatwi AA (2013) Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol 51:97–105CrossRefPubMedGoogle Scholar
  18. 18.
    Ibarra Sierra E et al (2012) Differential gene expression between skin and cervix induced by the E7 oncoprotein in a transgenic mouse model. Virology 433(2):337–345CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Roman A, Munger K (2013) The papillomavirus E7 proteins. Virology 445:138–168CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Friesner RAO, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196CrossRefPubMedGoogle Scholar
  21. 21.
    Schutza FAB, Choueiria TK, Sternbergb CN (2011) Pazopanib: clinical development of a potent anti-angiogenic drug. Crit Rev Oncol Hematol 77(3):163–171CrossRefGoogle Scholar
  22. 22.
    ACD/Structure Elucidator, version 12.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada,, 2014
  23. 23.
    Löscher Wolfgang, Fassbender ChristianP, Nolting Björn (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8(2):79–94CrossRefPubMedGoogle Scholar
  24. 24.
    JM Matesen (1990) In Gradwobl’s. In: Sonnerwirth AC, Jarett L (eds) Clinical laboratory methods and diagnosis. vol 11, 8 edn, B. I. publications Ltd, New DelhiGoogle Scholar
  25. 25.
    Reiner R (1982) Antibiotics-an introduction, vol 1. Roche Scientific Services, Switzerland, pp 21–25Google Scholar
  26. 26.
    Friedl F et al (1970) Studies on a new human cell line (SiHa) derived from carcinoma of uterus. I. Its establishment and morphology. Exp Biol Med 135(2):543–545CrossRefGoogle Scholar
  27. 27.
    Baker CARLC et al (1987) Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61(4):962–971PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim DavidE, Chivian Dylan, Baker David (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(suppl 2):W526–W531CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Premnath
    • 1
    Email author
  • Israel V. M. V. Enoch
    • 2
  • P. Mosae Selvakumar
    • 2
  • M. Indiraleka
    • 3
  • J. Jannet Vennila
    • 1
  1. 1.Department of Biotechnology, School of Health Science and BiotechnologyKarunya UniversityCoimbatoreIndia
  2. 2.Department of Chemistry, School of Science and HumanitiesKarunya UniversityCoimbatoreIndia
  3. 3.Department of BiotechnologyMepco Schlenk Engineering CollegeSivakasiIndia

Personalised recommendations