Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Interdisciplinary Sciences: Computational Life Sciences
  3. Article
Computational approaches to identify common subunit vaccine candidates against bacterial meningitis
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools

07 January 2022

Ana Clara Barbosa Antonelli, Vinnycius Pereira Almeida, … Simone Gonçalves Fonseca

T-Cell Epitopes Based Vaccine Candidate’s Prediction for Treatment Against Burkholderia pseudomallei: Causative Agent of Melioidosis

12 April 2022

Komal Pal & Ajay Kumar

Identification of Potent Vaccine Candidates Against Campylobacter jejuni Using Immunoinformatics Approach

01 October 2019

Nayan Gupta & Ajay Kumar

An Immunoinformatics Prediction of Novel Multi-Epitope Vaccines Candidate Against Surface Antigens of Nipah Virus

23 June 2022

Md. Mahfuzur Rahman, Joynob Akter Puspo, … Mohammed Ziaur Rahman

In silico designing of a multi-epitope vaccine against Burkholderia pseudomallei: reverse vaccinology and immunoinformatics

11 July 2022

Muhammad Shahab, Chandni Hayat, … Shahina Akter

Prediction of Conformational and Linear B-Cell Epitopes on Envelop Protein of Zika Virus Using Immunoinformatics Approach

09 January 2023

Kirti Srivastava & Vivek Srivastava

Identification and construction of a multi-epitopes vaccine design against Klebsiella aerogenes: molecular modeling study

24 August 2022

Sami I. Alzarea

Subtractive Proteomics and Immuno-informatics Approaches for Multi-peptide Vaccine Prediction Against Klebsiella oxytoca and Validation Through In Silico Expression

20 September 2021

Qudsia Yousafi, Humaira Amin, … Ashir Masroor

Subtractive Proteomics and Reverse Vaccinology Strategies for Designing a Multiepitope Vaccine Targeting Membrane Proteins of Klebsiella pneumoniae

24 January 2021

Vandana Solanki, Saroj Sharma & Vishvanath Tiwari

Download PDF
  • Published: 06 June 2013

Computational approaches to identify common subunit vaccine candidates against bacterial meningitis

  • Manne Munikumar1,
  • I. Vani Priyadarshini1,
  • Dibyabhaba Pradhan1,
  • Amineni Umamaheswari1 &
  • …
  • Bhuma Vengamma2 

Interdisciplinary Sciences: Computational Life Sciences volume 5, pages 155–164 (2013)Cite this article

  • 393 Accesses

  • 9 Citations

  • Metrics details

Abstract

Bacterial meningitis, an infection of the membranes (meninges) and cerebrospinal fluid (CSF) surrounding the brain and spinal cord, is a major cause of death and disability all over the world. From perinatal period to adult, four common organisms responsible for most of the bacterial meningitis are Streptococcus pneumonia, Neisseria meningitidis, Haemophilus influenza and Staphylococcus aureus. As the disease is caused by more organisms, currently available vaccines for bacterial meningitis are specific and restricted to some of the serogroups or serotypes of each bacterium. In an effort to design common vaccine against bacterial meningitis, proteomes of the four pathogens were compared to extract seven common surface exposed ABC transporter proteins. Pro-Pred server was used to investigate the seven surface exposed proteins for promiscuous T-cell epitopes prediction. Predicted 22 T-cell epitopes were validated through published positive control, SYFPEITHI and immune epitope database to reduce the epitope dataset into seven. T-cell epitope 162-FMILPIFNV-170 of spermidine/putrescine ABC transporter permease (potH) protein was conserved across the four selected pathogens of bacterial meningitis. Hence, structural analysis was extended for epitope 162-FMILPIFNV-170. Crystal structures of HLA-DRB alleles were retrieved and structure of potH was modeled using Prime v3.0 for structural analysis. Computational docking of HLA-DRB alleles and epitope 162-FMILPIFNV-170 of potH was performed using Glide v5.7. RMSD and RMSF of simulation studies were analyzed by Desmond v3.2. The docking and simulation results revealed that the HLA-DRB-epitope complex was stable with interaction repressive function of HLA. Thus, the epitope would be ideal candidate for T-cell driven subunit vaccine design against bacterial meningitis.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Altschul, S.F., Thomas, L.M., Alejandro, A.S., Jinghui, Z., Zheng, Z., Webb, M., David J.L. 1997. Gapped BLAST and PSI BLAST: A new generation of protein database search programs. Nucl Acid Res 25, 3389–3402.

    Article  CAS  Google Scholar 

  2. Bandaru, N.R., Ibrahim, M.K., Nuri, M.S., Suliman, M.E. 1998. Etiology and occurrence of acute meningitis in children Benghazi, Libyan Arab Jamahiriya. East Mediterr Health J 4, 50–57.

    Google Scholar 

  3. Barker, C.J., Beagley, K.W., Hafner, L.M., Timms, P. 2008. In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine 26, 1285–1296.

    Article  PubMed  CAS  Google Scholar 

  4. Bharathi, M.J., Ramakrishnan, R., Vasu, S., Meenakshi, R., Shivkumar, C.R., Palaniappan, R. 2003. Epidemiology of bacterial keratitis in a referral centre in south india. Indian J Med Microbiol 21, 239–245.

    PubMed  CAS  Google Scholar 

  5. Brooks, W., Daniel, K., Sung, S., Guida, W. 2008. Computational validation of the importance of absolute stereochemistry in virtual screening. J Chem Inf Model 48, 639–645.

    Article  PubMed  CAS  Google Scholar 

  6. Choudhuri, S. 2006. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J of Toxicol 25, 231–259.

    Article  CAS  Google Scholar 

  7. Dass, J.F.P., Deepika, V. 2008. Implications from predictions of HLA-DRB1 binding peptides in the membrane proteins of Corynebacterium diphtheriae. Bioinformation 3, 111–113.

    Article  Google Scholar 

  8. Doolan, D.L., Southwood, S., Chesnut, R., Appella, E., Gomez, E., Richards, A., Higashimoto, Y.I., Maewal, A., Sidney, J., Gramzinski, R.A., Mason, C., Koech, D., Hoffman, S.L., Sette, A. 2000. HLA-DRpromiscuous T cell epitopes from Plasmodium falciparum preerythrocytic — stage antigens restricted by multiple HLA class II alleles. J Immunol 165, 1123–1137.

    PubMed  CAS  Google Scholar 

  9. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G. 1995. A smooth particle mesh Ewald method. J Chem Phys 103, 8577–8593.

    Article  CAS  Google Scholar 

  10. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S. 2004. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739–1749.

    Article  PubMed  CAS  Google Scholar 

  11. Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., Mainz, D.T. 2006. Extra precision glide docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49, 6177–6196.

    Article  PubMed  CAS  Google Scholar 

  12. Ginsberg, L. 2004. Difficult and recurrent meningitis. J Neurol Neurosurg Psychiatry 75, 16–21.

    Article  Google Scholar 

  13. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., Banks, J.L. 2004. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47, 1750–1759.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, S.H., Jong, A.Y. 2001. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 3, 277–287.

    Article  PubMed  CAS  Google Scholar 

  15. Jorgensen, W.L., Maxwell, D.S., TiradoRives, J. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118, 11225–11236.

    Article  CAS  Google Scholar 

  16. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105, 6474–6487.

    Article  CAS  Google Scholar 

  17. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291.

    Article  CAS  Google Scholar 

  18. Locher, K.P., Lee, A.T., Rees, D.C. 2002. The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  19. Maestro v9.2, 2011. Schrödinger, LLC, New York.

  20. Mani, R., Pradhan, S., Nagarathna, S., Wasiulla, R., Chandramuki, A. 2007. Bacteriological profile of community acquired acute bacterial meningitis: A ten-year retrospective study in a tertiary neurocare centre in South India. Indian J Med Microbiol 25, 108–114.

    Article  PubMed  CAS  Google Scholar 

  21. Mora, M., Bensi, G., Capo, S., Falugi, F., Zingaretti, C., Manetti, A.G., Maggi, T., Taddei, A.R., Grandi, G., Telford, J.L. 2005. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci 102, 15641–15646.

    Article  PubMed  CAS  Google Scholar 

  22. Mustafa, A.S., Shaban, F.A. 2006. ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis 86, 115–124.

    Article  PubMed  CAS  Google Scholar 

  23. Mwangi, M.M., Wu, S.W., Zhou, Y., Sieradzki, K., de Lencastre, H., Richardson, P., Bruce, D., Rubin, E., Myers, E., Siggia, E.D., Tomasz, A. 2007. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci 104, 9451–9456.

    Article  PubMed  CAS  Google Scholar 

  24. Oftung, F., Lundin, K.E.A., Geluk, A., Shinnick, T.M., Meloen, R., Mustafa, A.S. 1997. Primary structure and MHC restriction of peptide defined T cell epitopes from recombinantly expressed mycobacterial protein antigens. Med Princples Pract 6, 66–73.

    Google Scholar 

  25. Panigada, M., Sturniolo, T., Besozzi, G., Boccieri, M.G., Sinigaglia, F., Grassi, G.G., Grassi, F. 2002. Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect Immun 70, 79–85.

    Article  PubMed  CAS  Google Scholar 

  26. Peters, B., Sette, A. 2007. Integrating epitope data into the emerging web of biomedical knowledge resources. Nat Rev Immunol 7, 485–490.

    Article  PubMed  CAS  Google Scholar 

  27. Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., Nemazee, D., Ponomarenko, J.V., Sathiamurthy, M., Schoenberger, S., Stewart, S., Surko, P., Way, S., Wilson, S., Sette, A. 2005. The immune epitope database and analysis resource: From vision to blueprint. PLoS Biol 3, e91.

    Article  PubMed  Google Scholar 

  28. Porter, V. 2011. Bacterial meningitis: A deadly but preventable disease. Prevention: Where do we stand with vaccination efforts? http://www.medscape.com/viewarticle/4810196

    Google Scholar 

  29. Rakesh, S., Pradhan, D., Umamaheswari A. 2009. In silico approach for future development of subunit vaccines against Leptospira interrogans serovar Lai. Int J Bioinform Res 1, 85–92.

    Google Scholar 

  30. Ramakrishnan, M., Ulland, A.J., Steinhardt, L.C., Mösi, J.C., Were, F., Levine, O.S. 2009. Sequelae due to bacterial meningitis among African children: A systematic literature review. BMC Med 14, 47.

    Article  Google Scholar 

  31. Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A., Stevanovic, S., 1999. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.

    Article  PubMed  CAS  Google Scholar 

  32. Rappuoli, R. 2001. Reverse vaccinology, a genomebased approach to vaccine development. Vaccine 19, 2688–2691.

    Article  PubMed  CAS  Google Scholar 

  33. Saez-Llorens, X., McCracken, G.H.Jr. 2003. Bacterial meningitis in children. Lancet 361, 2139–2148.

    Article  PubMed  Google Scholar 

  34. Schlech, W.F., Ward, J.I., Band, J.D., Hightower, A., Fraser, D.W., Broome, C.V. 1985. Bacterial meningitis in the United States, 1978 through 1981. The National Bacterial Meningitis Surveillance Study. J Am Med Assoc 253, 1749–1754.

    Article  Google Scholar 

  35. Segal, S., Pollard, A.J. 2004. Vaccines against bacterial meningitis. Brit Med Bull 72, 65–81.

    Article  PubMed  CAS  Google Scholar 

  36. Serruto, D., Rappuoli, R. 2006. Post-genomic vaccine development. FEBS Lett 580, 2985–2992.

    Article  PubMed  CAS  Google Scholar 

  37. Serruto, D., Serino, L., Masignani, V., Pizza, M. 2009. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine 27, 3245–3250.

    Article  PubMed  CAS  Google Scholar 

  38. Singh, H., Raghava, G.P. 2001. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 17, 1236–1237.

    Article  PubMed  CAS  Google Scholar 

  39. Singh, P., Suman, S., Chandna, S., Das, T.K. 2009. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer’s disease. Bioinformation 3, 440–445.

    Article  PubMed  Google Scholar 

  40. Southwood, S., Sidney, J., Kondo, A., del Guercio, M.F., Appella, E., Hoffman, S., Kubo, R.T., Chesnut, R.W., Grey, H.M., Sette, A. 1998. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160, 3363–3373.

    PubMed  CAS  Google Scholar 

  41. Tauber, M.G., Kim, Y.S., Leib, S.L. 1997. Neuronal injury in meningitis. In: Peterson, P.K., Remington, J.S. (Eds.) Defense of the Brain, Blackwell Science, Malden, Mass, 124–143.

    Google Scholar 

  42. Tettelin, H. 2009. The bacterial pan-genome and reverse vaccinology. Genome Dyn 6, 35–47.

    Article  PubMed  CAS  Google Scholar 

  43. Texier, C., Pouvelle, S., Busson, M., Hervé, M., Charron, D., Ménez, A., Maillère B. 2000. HLADR restricted peptide candidates for bee venom immunotherapy. J Immunol 164, 3177–3184.

    PubMed  CAS  Google Scholar 

  44. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 25, 4876–4882.

    Article  CAS  Google Scholar 

  45. Tunkel, A.R., Hartman, B.J., Kaplan, S.L., Kaufman, B.A., Roos, K.L., Scheld, W.M., Whitley, R.J. 2004. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 39, 1267–1284.

    Article  PubMed  Google Scholar 

  46. Umamaheswari, A., Pradhan, D., Hemanthkumar, M. 2012. Computer aided subunit vaccine design against pathogenic Leptospira serovars. Interdisciplinary Sci Comput Life Sci 4, 38–45.

    Article  CAS  Google Scholar 

  47. Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., Peters, B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4, e1000048.

    Article  PubMed  Google Scholar 

  48. Zagursky, R., Russell, D. 2001. Bioinformatics: Use in bacterial vaccine discovery. Biotechniques 31, 636–659.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. SVIMS Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, 517507, AP, India

    Manne Munikumar, I. Vani Priyadarshini, Dibyabhaba Pradhan & Amineni Umamaheswari

  2. Department of Neurology, SVIMS University, Tirupati, 517507, AP, India

    Bhuma Vengamma

Authors
  1. Manne Munikumar
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. I. Vani Priyadarshini
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dibyabhaba Pradhan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Amineni Umamaheswari
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Bhuma Vengamma
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Amineni Umamaheswari.

Electronic supplementary material

Supplementary material, approximately 33.2 KB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munikumar, M., Priyadarshini, I.V., Pradhan, D. et al. Computational approaches to identify common subunit vaccine candidates against bacterial meningitis. Interdiscip Sci Comput Life Sci 5, 155–164 (2013). https://doi.org/10.1007/s12539-013-0161-1

Download citation

  • Received: 18 November 2011

  • Revised: 05 April 2012

  • Accepted: 15 May 2012

  • Published: 06 June 2013

  • Issue Date: June 2013

  • DOI: https://doi.org/10.1007/s12539-013-0161-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • bacterial meningitis
  • T-cell epitope
  • MHC class II molecule
  • subunit vaccine
  • epitope based docking, molecular dynamics
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.171.156

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.