Skip to main content
Log in

Structural, functional and molecular docking study to characterize GMI1 from Arabidopsis thaliana

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

γ-irradiation and Mitomycin C Induced 1 (GMI1), is a member of the SMC-hinge domain-containing protein family that takes part in double stranded break repair mechanism in eukaryotic cells. In this study we hypothesize a small molecule-Adenosine Tri Phosphate (ATP) binding region of novel SMC like GM1 protein in model organism Arabidopsis thaliana using in silico modeling. Initially, analyzing sequence information for the protein indicated presence of motifs — ‘Walker A nucleotide-binding domain’ that are required to interact with nucleotides along with ‘Walker B’ motif and ABC signature sequences. This was further proven through GMI1-ATP docking experiment and results were verified by comparing the values with controls. In negative control, no binding was seen in the same binding region of GMI1 structure for small molecules randomly selected form PubChem database, whereas in positive control binding affinity of other known proteins with ATP binding potential resembled GMI1-ATP binding affinity of −5.4 kcal/mol. Furthermore we also docked small molecules that shares structural similarity with ATP to GMI1 and found that Purine Mononucleotide bound the region with the best affinity, which implies that the compound may bind the protein with strong binding and can work as a potential agonist/antagonist to GMI1. We believe that the study would shed more light into the GM1 mechanism of action. Although the computational predictions made here are based on concrete confidence, it should be mentioned that in vitro experimentation does not fall into the scopes of this study and thus the results found here have to be further validated in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera, A., Gómez-González, B. 2008. Genome instability: A mechanistic view of its causes and consequences. Nat Rev Genet 9, 204–217.

    Article  PubMed  CAS  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.

    PubMed  CAS  Google Scholar 

  3. Arnold, K., Bordoli, L., Kopp, J., Schwede, T. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.

    Article  PubMed  CAS  Google Scholar 

  4. Baker, D., Sali, A. 2001. Protein structure prediction and structural genomics. Science’s STKE 294, 93.

    CAS  Google Scholar 

  5. Balakrishnan, L., Venter, H., Shilling, R.A., van Veen, H.W. 2004. Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. J Biol Chem 279, 11273–11280.

    Article  PubMed  CAS  Google Scholar 

  6. Blewitt, M.E., Vickaryous, N.K., Hemley, S.J., Ashe, A., Bruxner, T.J., Preis, J.I., Arkell, R., Whitelaw, E. 2005. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci USA 102, 7629.

    Article  PubMed  CAS  Google Scholar 

  7. Böhmdorfer, G., Schleiffer, A., Brunmeir, R., Ferscha, S., Nizhynska, V., Kozák, J., Angelis, K.J., Kreil, D.P., Schweizer, D. 2011. GMI1, a structural-maintenanceof-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. Plant J 67, 420–433.

    Article  PubMed  Google Scholar 

  8. Cobbe, N., Heck, M. 2000. Review: SMCs in the world of chromosome biology — from prokaryotes to higher eukaryotes. J Struct Biol 129, 123–143.

    Article  PubMed  CAS  Google Scholar 

  9. De Piccoli, G., Cortes-Ledesma, F., Ira, G., Torres-Rosell, J., Uhle, S., Farmer, S., Hwang, J.Y., Machin, F., Ceschia, A., McAleenan, A. 2006. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8, 1032–1034.

    Article  PubMed  Google Scholar 

  10. Galluhn, D., Langer, T. 2004. Reversible assembly of the ATP-binding cassette transporter Mdl1 with the F1F0-ATP synthase in mitochondria. J Biol Chem 279, 38338–38345.

    Article  PubMed  CAS  Google Scholar 

  11. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook, Humana Press Inc., Totowa, New Jersey, 571–607.

    Chapter  Google Scholar 

  12. Gelly, J.C., Joseph, A.P., Srinivasan, N., de Brevern, A.G. 2011. iPBA: A tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res 39, W18–W23.

    Article  PubMed  CAS  Google Scholar 

  13. Grant, A., Lee, D., Orengo, C. 2004. Progress towards mapping the universe of protein folds. Genome Biol 5, 107.

    Article  PubMed  Google Scholar 

  14. Harvey, S.H., Krien, M., O’Connell, M.J. 2002. Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases. Genome Biol 3, 3003.3001–3003.3005.

    Article  Google Scholar 

  15. Hirano, T., Mitchison, T.J. 1994. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449.

    Article  PubMed  CAS  Google Scholar 

  16. Hitaoka, S., Matoba, H., Harada, M., Yoshida, T., Tsuji, D., Hirokawa, T., Itoh, K., Chuman, H. 2011. Correlation analyses on binding affinity of sialic acid analogues and anti-influenza drugs with human neuraminidase using ab initio MO calculations on their complex structures-LERE-QSAR analysis (IV). J Chem Inf Model 51, 2706–2716.

    Article  PubMed  CAS  Google Scholar 

  17. Holm, L., Sander, C. 1996. Mapping the protein universe. Science 273, 595.

    Article  PubMed  CAS  Google Scholar 

  18. Hopfner, K.P., Karcher, A., Craig, L., Woo, T.T., Carney, J.P., Tainer, J.A. 2001. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473–485.

    Article  PubMed  CAS  Google Scholar 

  19. Kanno, T., Bucher, E., Daxinger, L., Huettel, B., Böhmdorfer, G., Gregor, W., Kreil, D.P., Matzke, M., Matzke, A.J.M. 2008. A structural-maintenanceof-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nat Genet 40, 670–675.

    Article  PubMed  CAS  Google Scholar 

  20. Kozak, J., West, C.E., White, C., da Costa-Nunes, J.A., Angelis, K.J. 2009. Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA repair 8, 413–419.

    Article  PubMed  CAS  Google Scholar 

  21. Kyte, J., Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  22. Larionov, V., Karpova, T., Kouprina, N., Jouravleva, G. 1985. A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids. Curr Genet 10, 15–20.

    Article  PubMed  CAS  Google Scholar 

  23. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283–291.

    Article  CAS  Google Scholar 

  25. Lehmann, A.R. 2005. The role of SMC proteins in the responses to DNA damage. DNA repair 4, 309–314.

    Article  PubMed  CAS  Google Scholar 

  26. Losada, A., Hirano, T. 2001. Shaping the metaphase chromosome: Coordination of cohesion and condensation. Bioessays 23, 924–935.

    Article  PubMed  CAS  Google Scholar 

  27. Losada, A., Hirano, T. 2005. Dynamic molecular linkers of the genome: The first decade of SMC proteins. Genes Dev 19, 1269–1287.

    Article  PubMed  CAS  Google Scholar 

  28. Löwe, J., Cordell, S.C., van den Ent, F. 2001. Crystal structure of the SMC head domain: An ABC ATPase with 900 residues antiparallel coiled-coil inserted1. J Mol Biol 306, 25–35.

    Article  PubMed  Google Scholar 

  29. May, A.C.W., Johnson, M.S., Rufino, S.D., Wako, H., Zhu, Z.Y., Sowdhamini, R., Srinivasan, N., Rodionov, M.A., Blundell, T.L., Dover, G. 1994. The recognition of protein structure and function from sequence: Adding value to genome data [and discussion]. Philos Trans R Soc Lond B Biol Sci 344, 373–381.

    Article  PubMed  CAS  Google Scholar 

  30. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C. 1995. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247, 536–540.

    PubMed  CAS  Google Scholar 

  31. Notredame, C., Higgins, D.G., Heringa, J. 2000. TCoffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–218.

    Article  PubMed  CAS  Google Scholar 

  32. Parker, J., Guo, D., Hodges, R. 1986. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-rayderived accessible sites. Biochemistry 25, 5425–5432.

    Article  PubMed  CAS  Google Scholar 

  33. Roy, A., Kucukural, A., Zhang, Y. 2010. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 5, 725–738.

    Article  PubMed  CAS  Google Scholar 

  34. Schubert, V. 2009. SMC proteins and their multiple functions in higher plants. Cytogenet Genome Res 124, 202–214.

    Article  PubMed  CAS  Google Scholar 

  35. Shrivastav, M., De Haro, L.P., Nickoloff, J.A. 2007. Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134–147.

    Article  Google Scholar 

  36. Sippl, W. 2002. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods. Bioorg Med Chem 10, 3741–3755.

    Article  PubMed  CAS  Google Scholar 

  37. Stucki, M., Clapperton, J.A., Mohammad, D., Yaffe, M.B., Smerdon, S.J., Jackson, S.P. 2005. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226.

    Article  PubMed  CAS  Google Scholar 

  38. Tosco, P., Balle, T. 2012. A 3D-QSAR-driven approach to binding mode and affinity prediction. J Chem Inf Model 52, 302–307.

    Article  PubMed  CAS  Google Scholar 

  39. Trott, O., Olson, A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461.

    PubMed  CAS  Google Scholar 

  40. Volkamer, A., Kuhn, D., Rippmann, F., Rarey, M. 2012. DoGSiteScorer: A web-server for automatic binding site prediction, analysis, and druggability assessment. Bioinformatics 28, 2074–2075.

    Article  PubMed  CAS  Google Scholar 

  41. Wyman, C., Kanaar, R. 2006. DNA double-strand break repair: All’s well that ends well. Annu Rev Genet 40, 363–383.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Rezaul Islam or Md. Ismail Hosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.R., Hosen, M.I., Zaman, A. et al. Structural, functional and molecular docking study to characterize GMI1 from Arabidopsis thaliana . Interdiscip Sci Comput Life Sci 5, 13–22 (2013). https://doi.org/10.1007/s12539-013-0153-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0153-1

Key words

Navigation