Skip to main content
Log in

Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: A molecular drug target against malaria

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (pfSAHH) enzyme has been considered as a potential chemotherapeutic target against malaria due to the amino acid differences found on binding sites of pfSAHH related to human SAHH. It has been reported that noraristeromycin and some curcumin derivatives have potential binding with the largest cavity of pfSAHH, which is also related to the binding with Nicotinamide-Adenine-Dinucleotide (NAD) and Adenosine (ADN). Our present work focuses on docking and ADMET studies to select potential inhibitors of pfSAHH. The binding of the selected inhibitor of the PfSAHH active site was analyzed using Molegro Virtual Docker. In this study, curcumin and its derivatives have been found to have higher binding affinity with pfSAHH than noraristeromycin. Seven amino acid residues Leu53, His54, Thr56, Lys230, Gly397, His398 and Phe407 of pfSAHH involved in binding with curcumin, are the same as those for noraristeromycin, which reveals that curcumin and noraristeromycin bind in the same region of pfSAHH. Curcumin has shown a strong interaction with hydrophobic amino acid residues of pfSAHH. Molecular Docking and ADMET predictions suggest that curcumin can be a potent inhibitor of pfSAHH with ability to modulate the target in comparatively smaller dose. Therefore, curcumin is likely to become a good lead molecule for the development of effective drug against malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T., Kojima, K., Chahota, P., Kozaki, A., Milind, N.D., Kitade, Y. 2008. Synthesis of 4′-modified noraristeromycins to clarify the effect of the 4′-hydroxyl groups for inhibitory activity against Sadenosyl-l-homocysteine hydrolase. Bioorg Med Chem Lett 18, 2615–2618.

    Article  PubMed  CAS  Google Scholar 

  2. Brady, R.L., Cameron, A. 2004. Structure-based approaches to the development of novel anti-malarials. Curr Drug Targets, 137–149.

    Google Scholar 

  3. Efferth, T., Herrmann, F., Tahrani, A., Wink, M. 2011. Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin. Phytomedicine 18, 959–969.

    Article  PubMed  CAS  Google Scholar 

  4. Ertl, P., Rohde, B., Selzer, P. 2000. Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties. J Med Chem 43, 3714–3417.

    Article  PubMed  CAS  Google Scholar 

  5. Garah, F.B., Stigliani, J.L., Cosldan, F., Meunier, B., Robert, A. 2009. Docking studies of structurally diverse antimalarial drugs targeting PfATP6: No correlation between in silico binding affinity and in vitro antimalarial activity. ChemMedChem 4, 1469–1479.

    Article  PubMed  Google Scholar 

  6. Ji, H.F., Shen, L. 2009. Interactions of curcumin with the PfATP6 model and the implications for its antimalarial mechanism. Bioorg Med Chem Lett 19, 2453–2455.

    Article  PubMed  CAS  Google Scholar 

  7. Jorgensen, W.L. 1998. BOSS — Biochemical and organic simulation system. In: Schleyer, P.V.R. (Ed.) The Encyclopedia of Computational Chemistry, John Wiley & Sons Ltd., Athens, USA, 3281–3285.

    Google Scholar 

  8. Jung, M., Kim, H., Nam, K.Y., No, K.T. 2005. Threedimensional structure of Plasmodium falciparum Ca2+-ATPase (PfATP6) and docking of artemisinin derivatives to PfATP6. Bioorg Med Chem Lett 15, 2994–2997.

    Article  PubMed  CAS  Google Scholar 

  9. Kalani, K., Yadav, D.K., Khan, F., Srivastava, S.K., Suri, N. 2011. Pharmacophore, QSAR and ADME based semi-synthesis and in-vitro evaluation of ursolic acid analogs for anti-cancer activity. J Mol Model 8, 3389–3413.

    Google Scholar 

  10. Kitade, Y., Kozaki, A., Miwa, T., Nakanishi, M., Yatome, C. 2000. Synthesis of carbocyclic nucleosides and their SAH hydrolase inhibitory activities. Nucleic Acids Symp Ser 44, 111–112.

    Article  PubMed  Google Scholar 

  11. Kitade, Y., Kojima, H., Zulfiqur, F., Kim, H.S., Wataya, Y. 2003a. Synthesis of 2-fluoronoraristeromycin and its inhibitory activity against Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase. Bioorg Med Chem Lett 13, 3963–3965.

    Article  PubMed  CAS  Google Scholar 

  12. Kitade, Y., Kojima, H., Zulfiqur, F., Yabe, S., Yamagiwa, D., Ito, Y., Nakanishi, M., Ueno, Y., Kim, H.S., Wataya, Y. 2003b. Synthesis of carbocyclic and acyclic nucleosides possessing 2-fluoroadenine derivatives and their inhibitory activities against Plasmodium falciparum SAH hydrolase. Nucl Acid Res (Suppl. 3), 5–6.

    Google Scholar 

  13. Kojima, H., Yamaguchi, T., Kozaki, A., Nakanishi, M., Ueno, Y., Kitade, Y. 2002. Synthesis of noraristeromycin analogues possessing SAH hydrolase inhibitory activity for the development of antimalaria agents. Nucl Acid Res (Suppl. 2), 141–142.

    Google Scholar 

  14. Lipinski, C.A., Lombardo, F., Dominy, B.W., Fenney, P.J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46, 3–26.

    Article  PubMed  CAS  Google Scholar 

  15. Lowe, R., Glen, R., Mitchell, J.B.O. 2010. Predicting phospholipidosis using machine learning. Mol Pharm 7, 1708–1714.

    Article  PubMed  CAS  Google Scholar 

  16. Matthews, E.J., Kruhlak, N.L., Benz, R.D., Contrera, J.F. 2004a. Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data. Curr Drug Disc Tech 1, 61–76.

    Article  CAS  Google Scholar 

  17. Matthews, E.J., Kruhlak, N.L., Weaver, J.L., Benz, R.D., Contrera, J.F. 2004b. Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling. Curr Drug Disc Tech 1, 243–254.

    Article  CAS  Google Scholar 

  18. Meena, A., Yadav, D.K., Srivastava, A., Khan, F., Chanda, D, Chattopadhyay, S.K. 2011. In silico exploration of anti-inflammatory activity of natural Coumarinolignoids. Chem Biol Drug Des 78, 567–579.

    Article  PubMed  CAS  Google Scholar 

  19. Mimche, P.N., Taramelli, D., Vivas, L. 2011. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J 15, 10Suppl 1, S10.

    Article  CAS  Google Scholar 

  20. Mithani, S.D., Bakatselou, V., TenHoor, C.N., Dressman, J.B. 1996. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res 13, 163–167.

    Article  PubMed  CAS  Google Scholar 

  21. Naik, P.K., Srivastava, M., Bajaj, P., Jain, S., Dubey, A., Ranjan, P., Kumar, R., Singh, H. 2011. The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase (PfATP6). J Mol Model 17, 333–357.

    Article  PubMed  CAS  Google Scholar 

  22. Nakanishi, M., Yabe, S., Tanaka, N., Ito, Y., Nakamura, K.T., Kitade, Y. 2005. Mutational analyses of Plasmodium falciparum and human Sadenosylhomocysteine hydrolases. Mol Biochem Parasitol 143, 146–151.

    Article  PubMed  CAS  Google Scholar 

  23. Padmanaban, G., Nagaraj, V.A., Rangarajan, P.N. 2007. Drugs and drug targets against malaria. Curr Sci 92, 1545–1555.

    CAS  Google Scholar 

  24. Pajeva, I.K., Globisch, C., Wiese, M. 2009. Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCC1 transporter inhibitors. Chem Med Chem 4, 1883–1896.

    PubMed  CAS  Google Scholar 

  25. Rasoanaivo, P., Wright, C.W., Willcox, M.L., Gilbert, B. 2011. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar J 15,10 Suppl 1, S4.

    Article  Google Scholar 

  26. Reddy, R.C., Vatsala, P.G., Keshamouni, V.G., Padmanaban, G., Rangarajan, P.N. 2005. Curcumin for malaria therapy. Biochem Biophys Res Commun 326, 472–474.

    Article  PubMed  CAS  Google Scholar 

  27. Sadowski, J., Gasteiger, J., Klebe, G. 1994. Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34, 1000–1008.

    Article  CAS  Google Scholar 

  28. Sanguinetti, M.C., Tristani-Firouzi, M. 2006. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469.

    Article  PubMed  CAS  Google Scholar 

  29. Sharma, S.K., Kapoor, M., Ramya, T.N., Kumar, S., Kumar, G., Modak, R., Sharma, S., Surolia, N., Surolia, A. 2003. Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacylacyl carrier protein dehydratase (FabZ). J Biol Chem 278, 45661–45671.

    Article  PubMed  CAS  Google Scholar 

  30. Shi, W., Ting, L.M., Kicska, G.A., Lewandowicz, A., Tyler, P.C., Evans, G.B., Furneaux, R.H., Kim, K., Almo, S.C., Schramm, V.L. 2004. Plasmodium falciparum purine nucleoside phosphorylase:crystal structures, immucillin inhibitors, and dual catalytic function. J Biol Chem 279, 18103–18106.

    Article  PubMed  CAS  Google Scholar 

  31. Singh, D.V., Agarwal, S., Kesharwani, R.K., Misra, K. 2012. Molecular modeling and computational simulation of the photosystem-II reaction center to address isoproturon resistance in Phalaris minor. J Mol Model 18, 3903–3913.

    Article  PubMed  CAS  Google Scholar 

  32. Singh, D.B., Gupta, M.K., Kesharwani, R.K., Misra, K. 2013. Comparative docking and ADMET study of some curcumin derivatives and herbal congeners targeting β-amyloid. Netw Model Anal Health Inform Bioinforma 2, 13–27.

    Article  Google Scholar 

  33. Tagboto, S., Townson, S. 2001. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol 50, 199–295.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka, N., Nakanishi, M., Kusakabe, Y., Shiraiwa, K., Yabe, S., Ito, Y., Kitade, Y., Nakamura, K.T. 2004. Crystal structure of S-adenosyl-L-homocysteine hydrolase from the human malaria parasite Plasmodium falciparum. J Mol Biol 343, 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  35. Thomsen, R., Christensen, M.H. 2006. MolDock: A new technique for high-accuracy molecular docking. J Med Chem 49, 3315–3321.

    Article  PubMed  CAS  Google Scholar 

  36. Tschan, S., Mordmller, B., Kun, J.F. 2011. Threonine peptidases as drug targets against malaria. Expert Opin Ther Targets, 365–378.

    Google Scholar 

  37. Wang, J. 2009. Comprehensive assessment of ADME risks in drug discovery. Curr Pharm 15, 2195–2219.

    Article  CAS  Google Scholar 

  38. Yadav, D.K., Khan, F., Negi, A.S. 2011. Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J Mol Model 18, 2513–2525.

    Article  PubMed  Google Scholar 

  39. Yadav, D.K., Meena, A., Srivastava, A., Chanda, D., Khan, F., Chattopadhyay, S.K. 2010. Development of QSAR model for immunomodulatory activity of natural Coumarinolignoids. Drug Design, Development & Therapy 4, 173–186.

    CAS  Google Scholar 

  40. Yang, J., Chen, C. 2004. GEMDOCK: A generic evolutionary method for molecular docking. Proteins 55, 288–304.

    Article  PubMed  CAS  Google Scholar 

  41. Yang, X., Hu, Y., Yin, D.H., Turner, M.A., Wang, M., Borchardt, R.T., Howell, P.L., Kuczera, K., Schowen, R.L. 2003. Catalytic strategy of S-adenosyl-L-homocysteine hydrolase: Transition-state stabilization and the avoidance of abortive reactions. Biochemistry 42, 1900–1909.

    Article  PubMed  CAS  Google Scholar 

  42. Yuan, C.S., Saso, Y., Lazarides, E., Borchardt, R.T., Robins, M.J. 1999. Recent advances in S-adenosyl-L-homocysteine hydrolase inhibitors and their potential clinical applications. Expert Opin Ther Patents 9, 1197–1206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Bukhsh Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D.B., Gupta, M.K., Singh, D.V. et al. Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: A molecular drug target against malaria. Interdiscip Sci Comput Life Sci 5, 1–12 (2013). https://doi.org/10.1007/s12539-013-0147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0147-z

Key words

Navigation