Skip to main content
Log in

Evolution driven structural changes in CENP-E motor domain

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Genetic evolution corresponds to various biochemical changes that are vital development of new functional traits. Phylogenetic analysis has provided an important insight into the genetic closeness among species and their evolutionary relationships. Centromere-associated protein-E (CENP-E) protein is vital for maintaining cell cycle and checkpoint signal mechanisms are vital for recruitment process of other essential kinetochore proteins. In this study we have focussed on the evolution driven structural changes in CENP-E motor domain among primate lineage. Through molecular dynamics simulation and computational chemistry approaches we examined the changes in ATP binding affinity and conformational deviations in human CENP-E motor domain as compared to the other primates. Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg) and principle component analysis (PCA) results together suggested a gain in stability level as we move from tarsier towards human. This study provides a significant insight into how the cell cycle proteins and their corresponding biochemical activities are evolving and illustrates the potency of a theoretical approach for assessing, in a single study, the structural, functional, and dynamical aspects of protein evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadei, A., Linssen, A.B., Berendsen, H.J. 1993. Essential dynamics of proteins. Proteins 17, 412–425.

    Article  PubMed  CAS  Google Scholar 

  2. Awasthi, G., Singh, S., Dash, A.P., Das, A. 2008. Genetic characterization and evolutionary inference of TNF-alpha through computational analysis. Braz J Infect Dis 12, 374–379.

    Article  PubMed  CAS  Google Scholar 

  3. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A., Haak, J.R. 1984. Molecular dynamics with coupling to an external bath. J Chem Phys 8, 3684–3690.

    Article  Google Scholar 

  4. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B, Thanki, N., Weissiq, H., Westbrook, J.D., Zardecki, C. 2002. The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58, 899–907.

    Article  PubMed  Google Scholar 

  5. Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D., Ovcharenko, I., Pachter, L., Rubin, E.M. 2003. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394.

    Article  PubMed  CAS  Google Scholar 

  6. Cheatham, T.E., Miller, J.L., Fox, T., Darden, T.A., Kollman, P.A. 1995. Molecular dynamics simulations on solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 14, 4193–4194.

    Article  Google Scholar 

  7. Choo, K.H. 2001. Domain organization at the centromere and neocentromere. Dev Cell 1, 165–177.

    Article  PubMed  CAS  Google Scholar 

  8. Gaonkar, K.S., Gulati, G., Kamaraj, B., Purohit, R. 2012. Computational evaluation of small molecule inhibitors of RGS4 to regulate the dopaminergic control of striatal LTD. Egyp J Med Hum Genet 14, 135–142.

    Article  Google Scholar 

  9. Garcia-Saez, I., Yen, T., Wade, R.H., Kozielski, F. 2004. Crystal structure of the motor domain of the human kinetochore protein CENP-E. J Mol Biol 340, 1107–1116.

    Article  PubMed  CAS  Google Scholar 

  10. Gulati, G., Ganokar, K.S., Kamaraj, B., Kumar, A., Purohit, R. 2012. Structure based energy calculation to determine the regulation of G protein signaling by RGS and RGS-G protein interaction specificity. Interdiscip Sci Comput Life Sci 4, 173–182.

    Article  CAS  Google Scholar 

  11. Henikoff, S., Ahmad, K., Malik, H.S. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  12. Heslop-Harrison, J.S., Brandes, A., Schwarzacher, T. 2003. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11, 241–253.

    Article  PubMed  CAS  Google Scholar 

  13. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. 2008. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4, 435–447.

    Article  CAS  Google Scholar 

  14. Hughes, A.L. 2007. Looking for Darwin in all the wrong places: The misguided quest for positive selection at the nucleotide sequence level. Heredity (Edinb) 99, 364–373.

    Article  CAS  Google Scholar 

  15. Huson, D.H., Richter, D.H., Rausch, C., Dezulian, T., Franz, M., Rupp, R. 2007. Dendroscope — an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460.

    Article  PubMed  Google Scholar 

  16. Ishikawa, H., Kwak, K., Chung, J.K., Kim, S., Fayer, M.D. 2008. Direct observation of fast protein conformational switching. Proc Natl Acad Sci USA 105, 8619–8624.

    Article  PubMed  CAS  Google Scholar 

  17. Kamaraj, B., Purohit, R. 2012. Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene 513, 184–195.

    Google Scholar 

  18. Katoh, K., Toh, H. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899–1900.

    Article  PubMed  CAS  Google Scholar 

  19. Kersey, P.J., Lawson, D., Birney, E., Derwent, P.S., Haimel, M., Herrreo, J., Keenan, S., Kerhornou, A., Koscielny, G., Kahari, A., Kinsella, R.J., Kulesha, E., Maheshwari, U., Megy, K., Nuhn, M., Proctor, G., Staines, D., Valentin, F., Vilella, A.J., Yates, A. 2010. Ensembl Genomes: Extending Ensembl across the taxonomic space. Nucl Acid Res 38(Database issue), D563–D569.

    Article  CAS  Google Scholar 

  20. Kumar, A., Purohit, R. 2012a. Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene 503, 75–82.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar, A., Purohit, R. 2012b. Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mut Res 738–739, 28–37.

    Google Scholar 

  22. Kumar, A., Purohit, R. 2012c. Computational centrosomics: An approach to understand the dynamic behaviour of centrosome. Gene 511, 125–126.

    Article  PubMed  CAS  Google Scholar 

  23. Kumar, A., Rajendran, V., Sethumadhavan, R., Purohit, R. 2012a. In silico prediction of a diseaseassociated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ). FEBS Open Bio 2, 285–293.

    Article  CAS  Google Scholar 

  24. Kumar, A., Rajendran, V., Sethumadhavan, R., Purohit, R. 2012b. Insight into Nek2A activity regulation and its pharmacological prospects. Egyp J Med Hum Genet, doi: 10.1016/j.ejmhg.2012.10.006.

    Google Scholar 

  25. Lee, H.R., Hayden, K.E., Willard, H.F. 2011. Organization and molecular evolution of CENP-A-associated satellite DNA families in a basal primate genome. Genome Biol Evol 3, 1136–1149.

    Article  PubMed  Google Scholar 

  26. Mao, Y., Desai, A., Cleveland, D.W. 2005. Microtubule capture by CENP-E silences BubR1 dependent mitotic checkpoint signaling. J Cell Biol 170, 873–880.

    Article  PubMed  CAS  Google Scholar 

  27. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30, 2785–2791.

    Article  PubMed  CAS  Google Scholar 

  28. Pennacchio, L.A., Rubin, E.M. 2001. Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet 2, 100–109.

    Article  PubMed  CAS  Google Scholar 

  29. Purohit, R., Sethumadhavan, R. 2009. Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci Comput Life Sci 1, 320–328.

    Article  CAS  Google Scholar 

  30. Purohit, R., Rajasekaran, R., Sudandiradoss, C., George Priya Doss, C., Ramanathan, K., Sethumadhavan, R. 2008. Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants. Int J Biol Macromol 42, 386–391.

    Article  PubMed  CAS  Google Scholar 

  31. Purohit, R., Rajendran, V., Sethumadhavan, R. 2011a. Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: An in silico analysis. J Mol Model 17, 869–877.

    Article  PubMed  CAS  Google Scholar 

  32. Purohit, R., Rajendran, V., Sethumadhavan, R. 2011b. Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants. J Biomol Struct Dyn 29, 137–152.

    Article  PubMed  CAS  Google Scholar 

  33. Putkey, F.R., Cramer, T., Morphew, M.K., Silk, A.D., Johnson, R.S., McIntosh, J.R., Cleveland, D.W. 2002. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3, 351–365.

    Article  PubMed  CAS  Google Scholar 

  34. Rajendran, V., Purohit, R., Sethumadhavan, R. 2012. In silico investigation of molecular mechanism of laminopathy cause by a point mutation (R482W) in lamin A/C protein. Amino Acids 43, 603–615.

    Article  PubMed  CAS  Google Scholar 

  35. Schueler, M.G., Swanson, W., Thomas, P.J. 2010. NISC Comparative Sequencing Program, Green ED. Adaptive evolution of foundation kinetochore proteins in primates. Mol Biol Evol 27, 1585–1597.

    Article  PubMed  CAS  Google Scholar 

  36. Sharp, J.A., Franco, A.A., Osley, M.A., Kaufman, P.D. 2002. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 16:85–100.

    Article  PubMed  CAS  Google Scholar 

  37. Tanudji, M., Shoemaker, J., L’Italien, L., Russell, L., Chin, G., Schebye, X.M. 2004. Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol Biol Cell 15, 3771–3781.

    Article  PubMed  CAS  Google Scholar 

  38. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22, 4673–4680.

    Article  CAS  Google Scholar 

  39. Weaver, B.A., Bonday, Z.Q., Putkey, F.R., Kops, G.J., Silk, A.D., Cleveland, D.W. 2003. Centromereassociated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 162, 551–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituraj Purohit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Kamaraj, B., Sethumadhavan, R. et al. Evolution driven structural changes in CENP-E motor domain. Interdiscip Sci Comput Life Sci 5, 102–111 (2013). https://doi.org/10.1007/s12539-013-0137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0137-1

Key words

Navigation