Skip to main content
Log in

Exploring putative molecular mechanisms of human pyruvate kinase enzyme deficiency and its role in resistance against Plasmodium falciparum malaria

  • Original Articles
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Malaria is the third most prevalent cause of global mortality and is an interesting case of evolutionary selection. In response to high frequency of malaria infection, several host genetic factors have been selected, such as Hemoglobin variants, Glucose-6-phosphate dehydrogenase (G6PD) deficiency and pyruvate kinase deficiency. Among these popular host genetic factors, deficiency of pyruvate kinase enzyme is one of the most important factor that provide resistance against malaria. Regulation of this enzyme at the level of transcription is important and several factors may play crucial role in regulation of this enzyme. DNA sequence variation and epigenetic factors modifying transcriptional regulation of gene have been explored in context of several diseases. In the present study, we explored the factors modifying transcription regulation of pyruvate kinase gene with the help of Bioinformatics tools. On the basis of our predictions we hypothesize that any factor that reduces the availability (level) or activity of pyruvate kinase enzyme must play a strong role in resistance to malaria. Thus, factors reducing the activity (loss of function) or level of pyruvate kinase have been selected to provide resistance against malaria primarily in endemic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averof, M., Patel, N.H. 1997. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686.

    Article  CAS  PubMed  Google Scholar 

  2. Ayi, K., Liles, W.C., Gros, P., Kain, K.C. 2009. Adenosine triphosphate depletion of erythrocytes simulates the phenotype associated with pyruvate kinase deficiency and confers protection against Plasmodium falciparum in vitro. J Infect Dis 200, 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  3. Ayi, K., Min-Oo, G., Serghides, L., Crockett, M., Kirby-Allen, M., Quirt, I., Gros, P., Kain, K.C. 2008. Pyruvate kinase deficiency and malaria. N Engl J Med 358, 1805–1810.

    Article  CAS  PubMed  Google Scholar 

  4. Bai, F., Rankinen, T., Charbonneau, C., Belsham, D.D., Rao, D.C., Bouchard, C., Argyropoulos, G. 2004. Functional dimorphism of two hAgRP promoter SNPs in linkage disequilibrium. J Med Genet 41, 350–353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Beer, T.M., Evans, A.J., Hough, K.M., Lowe, B.A., McWilliams, J.E., Henner, W.D. 2002. Polymorphisms of GSTP1 and related genes and prostate cancer risk. Prostate Cancer and Prost Dis 5, 22–27.

    Article  CAS  Google Scholar 

  6. Bird, A.P., Wolffe, A.P. 1999. Methylation-induced repression-belts, braces and chromatin. Cell 99, 451–454.

    Article  CAS  PubMed  Google Scholar 

  7. Bosma, P.J., Chowdhury, J.R., Bakker, C., Gantla, S., de Boer, A., Oostra, B.A., Lindhout, D., Tytgat, G.N., Jansen, P.L., Oude Elferink, R.P. et al. 1995. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333, 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  8. Bradley, R.K., Li, X.Y., Trapnell, C., Davidson, S., Pachter, L., Chu, H.C., Tonkin, L.A., Biggin, M.D., Eisen, M.B. 2010. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 10.1371/journal.pbio.1000343

    Google Scholar 

  9. Buckland, P.R., Hoogendoorn, B., Coleman, S.L., Guy, C.A., Smith, S.K. 2005. Strong bias in the location of functional promoter polymorphisms. Hum Mutat 26, 214–223.

    Article  CAS  PubMed  Google Scholar 

  10. De Gobbi, M., Viprakasit, V., Hughes, J.R., Fisher, C., Buckle, V.J. Ayyub, H., Gibbons, R.J., Vernimmen, D., Yoshinaga, Y., de Jong, P., Cheng, J.F., Rubin, E.M., Wood, W.G., Bowden, D., Higgs, D.R. 2006. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215–1217.

    Article  PubMed  Google Scholar 

  11. Fortin, A., Stevenson, M.M., Gros, P. 2002. Susceptibility to malaria as a complex trait: Big pressure from a tiny creature. Hum Mol Genet 11, 2469–2478.

    Article  CAS  PubMed  Google Scholar 

  12. Graze, R.M., McIntyre, L.M., Main, B.J., Wayne, M.L., Nuzhdin, S.V. 2009. Regulatory Divergence in Drosophila melanogaster and D. simulans a Genomewide Analysis of Allele-specific Expression. Genetics 183, 547–561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kwiatkowski, D.P. 2005. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77, 171–192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mackinnon, M.J., Mwangi, T.W., Snow, R.W., Marsh, K., Williams, T.N. 2005. Heritability of malaria in Africa. PLoS Med. doi:10.1371/journal.pmed.0020340

    Google Scholar 

  15. Min-Oo, G., Willemetz, A., Tam, M., Canonne-Hergaux, F., Stevenson, M.M., Gros, P. 2010. Mapping of Char10, a novel malaria susceptibility locus on mouse chromosome 9. Genes Immun 11, 113–123.

    Article  CAS  PubMed  Google Scholar 

  16. Rockman, M.V., Wray, G.A. 2002. Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19, 1991–2004.

    Article  CAS  PubMed  Google Scholar 

  17. Sinha, S., Qidwai, T., Kanchan, K., Anand, P., Jha, G.N., Pati, S.S., Mohanty, S., Mishra, S.K., Tyagi, P.K., Sharma, S.K., Indian Genome Variation Consortium, Venkatesh, V., Habib, S. 2008. Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India. Malar J 7, 250.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sinha, S., Jha, G.N., Anand, P., Qidwai, T., Pati, S.S., Mohanty, S., Mishra, S.K., Tyagi, P.K., Sharma, S.K., Venkatesh, V., Habib, S. 2009. CR1 levels and gene polymorphisms exhibit differential association with falciparum malaria in regions of varying disease endemicity. Hum Immunol 70, 244–250.

    Article  CAS  PubMed  Google Scholar 

  19. Stern, D.L., Orgogozo, V. 2008. The loci of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Strunnikova, M., Schagdarsurengin, U., Kehlen, A., Garbe, J.C., Stampfer, M.R., Dammann, R. 2005. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol 25, 3923–3933.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Van Wijk, R., Huizinga, E.G., van Wesel, A.C., van Oirschot, B.A., Hadders, M.A., van Solinge, WW. 2009. Fifteen novel mutations in PKLR associated with pyruvate kinase (PK) deficiency: structural implications of amino acid substitutions in PK. Hum Mutat 30, 446–453.

    Article  PubMed  Google Scholar 

  22. WHO, 2010. World malaria report. World Health Organization, Geneva.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Jamal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qidwai, T., Jamal, F. & Singh, S. Exploring putative molecular mechanisms of human pyruvate kinase enzyme deficiency and its role in resistance against Plasmodium falciparum malaria. Interdiscip Sci Comput Life Sci 6, 158–166 (2014). https://doi.org/10.1007/s12539-013-0025-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0025-8

Key words

Navigation