Skip to main content
Log in

Molecular characterization of Mtb-OMP decarboxylase by modeling, docking and dynamic studies

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Tuberculosis (TB), the second most deadly disease in the world is caused by Mycobacterium tuberculosis (Mtb). In the present work a unique enzyme of Mtb orotidine 5′ monophosphate decarboxylase (Mtb-OMP Decase) is selected as drug target due to its indispensible role in biosynthesis of pyrimidines. The present work is focused on understanding the structural and functional aspects of Mtb-OMP Decase at molecular level. Due to absence of crystal structure, the 3D structure of Mtb-OMP Decase was predicted by MODELLER9V7 using a known structural template 3L52. Energy minimization and refinement of the developed 3D model was carried out with Gromacs 3.2.1 and the optimized homology model was validated by PROCHECK,WHAT-IF and PROSA2003. Further, the surface active site amino acids were quantified by WHAT-IF pocket. The exact binding interactions of the ligands, 6-idiouridine 5′ monophosphate and its designed analogues with the receptor Mtb-OMP Decase were predicted by docking analysis with AUTODOCK 4.0. This would be helpful in understanding the blockade mechanism of OMP Decase and provide a candidate lead for the discovery of Mtb-OMP Decase inhibitors, which may bring insights into outcome new therapy to treat drug resistant Mtb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 50, 3389–3402.

    Article  Google Scholar 

  2. Arfken, G. 1985. The method of steepest descents. In: Mathematical Methods for Physicists, 3rd Edition, FL Academic Press, Orlando, 428–436.

    Google Scholar 

  3. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P. 1987. The missing term in effective pair potentials. J Phys Chem 91, 6269–6271.

    Article  CAS  Google Scholar 

  4. Bohm, M., Sturzebecher, J., Klebe, G. 1999. Threedimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to-elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 42, 458–477.

    Article  PubMed  CAS  Google Scholar 

  5. Buntrock, R.E. 2002. ChemOffice Ultra 7.0. J Chem Inf Comput Sci 42, 1505–1506.

    Article  PubMed  CAS  Google Scholar 

  6. Chenna, R., Sugawana, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D. 2003. Multiple sequene alignment with the Clustal series of programs. Nucleic Acids Res 31, 3497–3500.

    Article  PubMed  CAS  Google Scholar 

  7. Chowdhuri, S., Tan, M.L., Ichiye, T.J. 2006. Dynamical properties of the soft sticky dipole-quadrupoleoctupole water model: A molecular dynamics study. J Chem Phys 125, 14451–14453.

    Article  Google Scholar 

  8. DeLano, W.L. 2006. The PyMOL Molecular Graphics System. DeLano Scientific, SanCarlos, CA.

    Google Scholar 

  9. Goodsell, D.S., Morris, G.M. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19, 1639–1662.

    Article  Google Scholar 

  10. Gowsia, D., Babajan, B., Chaitanya, M., Rajasekhar, C., Madhusudana, P., Anuradha, C.M., Ramakrishna, G., Sambasiva Rao, K.R.S., Kumar, C.S. 2009. In silico effective inhibition of galtifloxacin on built Mtb-DNA gyrase. Journal of Bioinformatics and Sequence Analysis 1, 050–055.

    CAS  Google Scholar 

  11. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, JGEM. 1997. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18, 1463–1472.

    Article  CAS  Google Scholar 

  12. Kotra, L.P., Kain, K.C., Pai, E.F. 2005a. 6-Substituted nucleoside and nucleotide derivatives as antimalarial agents. US Patent Application 60/597,142, patent pending.

  13. Kotra, L.P., Pai, E.F., Bello, A.M., Fujihashi, M., Poduch, E. 2005b. Inhibitors of orotidine monophosphate decarboxylase (ODCase) activity. US Patent Application 60/596,537, patent pending.

  14. Laskowski, R.A., MacArthur, M.W., Moss, D.S. 1993. Gyrase PROCHECK a program to check the stereo chemical quality of protein structure. Gyrase J Appl Cryst 26, 283–291.

    Article  CAS  Google Scholar 

  15. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M. 1996. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477–486.

    Article  PubMed  CAS  Google Scholar 

  16. Laskowski, R.A., Chistyakov, V.V., Thornton, J.M. 2005. PDBsum more: New summaries and analyses of the known 3D structures proteins and nucleic acids. Nucleic Acids Res 33, D266–D268.

    Article  PubMed  CAS  Google Scholar 

  17. Lieberman, I., Kornberg, A., Simms, E.S. 1955. Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phosphate and uridine-5′-phosphate. J Biol Chem 215, 403–415.

    Google Scholar 

  18. Lindal, E., Hess, B., van der Spoel, D. 2001. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J Mol Model 7, 306–317.

    Google Scholar 

  19. Masjedi, M.R., Farnia, P., Sorooch, S., Pooramiri, M.V., Mansoori, S.D., Zarifi, A.Z., Akbarvelayati, A., Hoffner, S. 2006. Extensively drug resistance tuberculosis: 2 years of surveillance. Iran Clin Infect Dis 43, 841–847.

    Article  CAS  Google Scholar 

  20. Sanner, M.F. 1999. Python: A programming language for software integration and development. J Mol Graphics Mod 17, 57–61.

    CAS  Google Scholar 

  21. Miller, B.G., Wolfenden, R. 2002. Catalytic proficiency: The unusual case of OMP decarboxylase. Annu Rev Biochem 71, 847–885.

    Article  PubMed  CAS  Google Scholar 

  22. Pisabarro, M.T., Ortiz, A.R., Serrano, L., Wade, R.C. 1994. Homology modeling of the Abl-SH3 domain. Proteins: Structure, Function and Bioinformatics 24, 203–215.

    Google Scholar 

  23. Schutz, A.G.R, Konig, S., Hubner, G., Tittmann, K. 2005. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Biochemistry 44, 6164–6179.

    Article  PubMed  Google Scholar 

  24. Sievers, A., Wolfenden, R. 2002. Equilibrium of formation of the 6-carbanion of UMP, a potential intermediate in the action of OMP decarboxylase. J Am Chem Soc 124, 13986–13987.

    Article  PubMed  CAS  Google Scholar 

  25. Snider, M.J., Wolfenden, R. 2000. The rate of spontaneous decarboxylation of amino acids. J Am Chem Soc 122, 11507–11508.

    Article  CAS  Google Scholar 

  26. Tittmann, K., Golbik, R., Uhlemann, K., Khailova, L., Schneider, G., Patel, M., Jordan, F., Chipman, D.M., Duggleby, R.G., Hübner, G. 2003. NMR analysis of covalent intermediates in thiamin diphosphate enzymes. Biochemistry 42, 7885–7891.

    Article  PubMed  CAS  Google Scholar 

  27. Tomii, K., Hirokawa, T., Motono, C. 2005. Protein structure prediction using a variety of profile libraries and 3D verification. Proteins 61, 114–121.

    Article  PubMed  CAS  Google Scholar 

  28. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J. 2005. GROMACS: Fast, flexible and free. J Comput Chem 26, 1701–1718.

    Article  Google Scholar 

  29. Warshel, A., Florian, J. 1998. Computer simulations of enzyme catalysis: Finding out what has been optimized by evolution. Proc Natl Acad Sci USA 95, 5950–5955.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. M. Anuradha or Chitta Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhusudana, P., Babajan, B., Chaitanya, M. et al. Molecular characterization of Mtb-OMP decarboxylase by modeling, docking and dynamic studies. Interdiscip Sci Comput Life Sci 4, 142–152 (2012). https://doi.org/10.1007/s12539-012-0127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-012-0127-8

Key words

Navigation