Advertisement

Computational studies on molecular interactions of 6-thioguanosine analogs with anthrax toxin receptor 1

  • Nitin K. Singh
  • Britto C. Pakkkianathan
  • Manish Kumar
  • Jayssima R. Daddam
  • Sridhar Jayavel
  • Mani Kannan
  • Girinath G. Pillai
  • Muthukalingan KrishnanEmail author
Article

Abstract

Dormant endospores of Bacillus anthracis are the causative agent of anthrax, which is an acute disease for both human and animals. Anthrax has been practised as biological weapon because of two attributes: i) short duration of spore germination, and ii) lethal toxaemia of the vegetative stage. Pathogenesis is caused by the activity of edema toxin and lethal toxin. Protective antigen (PA), is an essential component of both complexes, binds to Anthrax Toxin Receptor (ATR) and mediates the lethality in mammals. The combination of vaccine and antibiotics are preferred to be effective treatment for destruction of the vegetative cell wall but could not be a successive destructor for endospores. So the present study is intended to identify the small molecules as a potential inhibitor for ATR1. 3D structure of Anthrax Toxin Receptor 1 (ATR1) was built by using the crystal structure of Anthrax Toxin Receptor 2 (ATR2) from Homo sapiens as template. Molecular docking of 6-thiogunaosine (6-TG) analogs was performed on the ATR1 model and effective inhibitor was selected based on the docking results. The docking results showed that the three residues in the ATR1 binding pocket (Phe162, Asp160, and Phe22) were essential for making hydrogen bond with the 2-(2-bromo-6-chloro-4H-purin-9(5H)-yl)- 5-(hydroxymethyl) tetrahydrofuran-3,4-diol (C11H13N3O5). The data presented here strongly indicate that the interactions of these four residues are necessary for a stronger binding of the ATR1 with C11H13N3O5. Also, the study proposed C11H13N3O5 as an effective inhibitor by the comparison of docking energy.

Key words

Bacillus anthracis anthrax toxin receptor homology modelling 6-thiogunaosine analogs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12539_2012_126_MOESM1_ESM.doc (466 kb)
Supplementary material, approximately 466 KB.
12539_2012_126_MOESM2_ESM.doc (50 kb)
Supplementary material, approximately 49.5 KB.

References

  1. [1]
    Abrami, L., Liu, S., Cosson, P., Leppla, S.H., Van der Goot, F.G. 2003. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrindependent process. J Cell Biol 160, 321–328.PubMedCrossRefGoogle Scholar
  2. [2]
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.PubMedGoogle Scholar
  3. [3]
    Aparoy, P., Reddy, R.N., Guruprasad, L., Reddy, M.R., Reddana, P. 2008. Homology modelling of 5-lipooxygenase and hints for better inhibitor design. J Comput Aided Mol Des 22, 611–619.PubMedCrossRefGoogle Scholar
  4. [4]
    Banks, D.J., Ward, S.C., Bradley, K.A. 2006. New insights into the functions of anthrax toxin. Expert Rev Mol Med 8, 1–18.PubMedCrossRefGoogle Scholar
  5. [5]
    Bradley, K.A., Mogridge, J., Jonah, G., Rainey, A., Batty, S., Young, J.A. 2003. Binding of anthrax toxin to its receptor is similar to alpha integrin-ligand interactions. J Biol Chem 278, 49342–49347.PubMedCrossRefGoogle Scholar
  6. [6]
    Brunger, A. 1992. X-PLOR, Version 3.1: A System for X-Ray Crystallography and NMR. Yale University, New Haven, CT.Google Scholar
  7. [7]
    Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31, 3497–3500.PubMedCrossRefGoogle Scholar
  8. [8]
    Diaz, A., Horjales, E., Rudino, P.E., Arrola, R., Hansberg, W. 2004. Unusual Cys-Tyr covalent bond in a large Cyp51A&B. J Mol Biol 342, 971–973.PubMedCrossRefGoogle Scholar
  9. [9]
    Duesbery, N.S., Webb, C.P., Leppla, S.H., Gordon, V.M., Klimpel, K.R., Copeland, T.D., Ahn, N.G., Oskarsson, M.K., Fukasawa, K., Paull, K.D., Vande Woude, G.F. 1998. Proteolytic inactivation of MAPkinase by anthrax lethal factor. Sci 280, 734–737.CrossRefGoogle Scholar
  10. [10]
    Feller, S.E., MacKerell, A.D.Jr. 2000. An Improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104, 7510–7515.CrossRefGoogle Scholar
  11. [11]
    Grubmuller, H., Heller, H., Windemuth, A., Schulten, K. 1991. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simulat 6, 121–142.CrossRefGoogle Scholar
  12. [12]
    Guex, N., Peitsch, M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723.PubMedCrossRefGoogle Scholar
  13. [13]
    James, M.M., John, E.D., John, H.C., Stephen, F.M. 2011. Protien-ligand interactions: Thermodynamics effects associated with increasing nonpolar surface area. JACS 133, 18515–18521.Google Scholar
  14. [14]
    Kale, L.R., Skeel, M., Bhandarkar, R., Brunner, A., Gursoy, N., Krawetz, J., Phillips, A., Shinozaki, K., Varadarajan, K., Schulten, K. 1999. NAMD2: Greater scalability for parallel molecular dynamics. J Comput Phys 151, 283–286.CrossRefGoogle Scholar
  15. [15]
    Leppla, S.H. 1982. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79, 3162–3166.PubMedCrossRefGoogle Scholar
  16. [16]
    Liu, H.H. 1999. Antibiotic resistance in bacteria: A current and future problem. Adv Exp Med Biol 455, 387–396.PubMedCrossRefGoogle Scholar
  17. [17]
    Mackerell, A.D. Jr., Bashford, D., Bellott, M., Dunbrack, R.L. Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J.E., Watanabe, M., Wiokiewicz-Kuczera, J., Yin, D., Karplus, M. 1998. All hydrogen empricial potential for molecular modeling and dynamic was studies of protein using the CHARMM22 force field. J Phys Chem 281, 1630–1635.Google Scholar
  18. [18]
    MacKerell, A.D. Jr., Banavali, N., Foloppe, N. 2001. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265.CrossRefGoogle Scholar
  19. [19]
    Monique, A., Raynal, C.S., Adel, M.N., Ludmyl, A., Jurgen, B., Ernesto, A.S. 2007. Identification of an in vivo inhibitor of Bacillus anthracis spore germination. J Biol Chem 282, 12112–12118.Google Scholar
  20. [20]
    Purohit, R., Sethumadhavan, R. 2009. Structural basis for the resilience of darunavir (TMC114) resistance major flap mutation of HIV-1 protease. Interdiscip Sci Comput Life Sci 1, 320–328.CrossRefGoogle Scholar
  21. [21]
    Ramamoorthy, M., Chinnaiah, S.V., Maruthamuthu, R., Ekambaram, R. 2008. A study of molecular modeling, dynamics and mechanics of cyp2b6 and nk binding using Hex. JCIB 1, 109–114.Google Scholar
  22. [22]
    Sali, A., Blundell, T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.PubMedCrossRefGoogle Scholar
  23. [23]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.PubMedCrossRefGoogle Scholar
  24. [24]
    Van der Goot, F.G., Young, J.A. 2009. Receptors of anthrax toxin and cell entry. Mol Aspects Med 6, 406–412.CrossRefGoogle Scholar
  25. [25]
    Vitale, G., Pelizzari, R., Recchi, C., Napolitani, G., Mock, M., Montecucco, C. 1998. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248, 706–711.PubMedCrossRefGoogle Scholar
  26. [26]
    Young, J.A., Collier, R. 2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76, 243–265.PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nitin K. Singh
    • 1
  • Britto C. Pakkkianathan
    • 1
  • Manish Kumar
    • 2
  • Jayssima R. Daddam
    • 3
  • Sridhar Jayavel
    • 4
  • Mani Kannan
    • 1
  • Girinath G. Pillai
    • 5
  • Muthukalingan Krishnan
    • 1
    Email author
  1. 1.Department of Environmental BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Advanced Instrumentation Research FacilityJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Department of BioinformaticsGlobal Insitute of BiotechnologyHimayat NagaraIndia
  4. 4.UGC-Networking Resource Centre, School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia
  5. 5.Florida Center for Heterocyclic CompoundsUniversity of FloridaGainesvilleUSA

Personalised recommendations