Skip to main content

Computer aided subunit vaccine design against pathogenic Leptospira serovars

Abstract

Epitopes of Leptospira inducing CD4+ T-cell responses by binding to human MHC molecules could critically contribute to the development of subunit vaccines for leptospirosis. Herein, we have identified unique vaccine peptides from outer membrane proteins (OMPs) common to four sequenced pathogenic Leptospira serovars through in silico reverse vaccinology technique. The OMPs were explored for probable antigens using jemboss and screened in ProPred subsequently to predict thirty HLA-DRB epitopes. The HLA-DRB epitopes were validated through published positive control (HA307-PKYVKQNTLKLAT-319), SYFPEITHI and immune epitope database (IEDB) to list twelve epitopes as putative subunit vaccine peptides from nine OMPs. Cation efflux system membrane protein (czcA) having four subunit vaccine peptides, was modeled in Modeller9v7 and evaluated through Procheck, ProSA and ProQ. The HLA-DRB alleles and czcA 3D interactions were studied using Hex 5.1. Further, the T-cell epitopes present in czcA were docked individually with HLA-DRB alleles. The docking result revealed that czcA and its epitopes were interacting well with HLA-DRB alleles, hence would certainly produce cell mediated immune response in host. Thus, czcA and its four subunit vaccine peptides would be ideal T-cell driven efficacious vaccine against leptospirosis.

References

  1. [1]

    Altschul, S.F., Thomas, L.M., Alejandro, A.S., Jinghui, Z., Zheng, Z., Webb, M., David J.L. 1997. Gapped BLAST and PSI BLAST: A new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    PubMed  Article  CAS  Google Scholar 

  2. [2]

    Barker, C.J., Beagley, K.W., Hafner, L.M., Timms, P. 2008. In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine 26, 1285–1296.

    PubMed  Article  CAS  Google Scholar 

  3. [3]

    Bharti, A.R., Nally, J.E., Ricaldi, J.N., Matthias, M.A., Diaz, M.M., Lovett, M.A., Levett, P.N., Gilman, R.H., Willig, M.R., Gotuzzo, E., Vinetz, J.M. 2003. Leptospirosis: A zoonotic disease of global importance. Lancet Infect Dis 3, 757–771.

    PubMed  Article  Google Scholar 

  4. [4]

    Bryson, K., McGuffin, L.J., Marsden, R.L., Ward, J.J., Sodhi, J.S., Jones, D.T. 2005. Protein structure prediction servers at University College London. Nucleic Acids Res 33, W36–38.

    PubMed  Article  CAS  Google Scholar 

  5. [5]

    Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.A., Mothé, B.R., Chisari, F.V., Watkins, D.I., Sette, A. 2005. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57, 304–314.

    PubMed  Article  CAS  Google Scholar 

  6. [6]

    Bulach, D.M., Zuerner, R.L., Wilson, P., Seemann, T., McGrath, A., Cullen, P.A., Davis, J., Johnson, M., Kuczek, E., Alt, D.P., Peterson-Burch, B., Coppel, R.L., Rood, J.I., Davies, J.K., Adler, B. 2006. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103, 14560–14565.

    PubMed  Article  Google Scholar 

  7. [7]

    Carver, T., Bleasby, A. 2003. The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics 19, 1837–1843.

    PubMed  Article  CAS  Google Scholar 

  8. [8]

    Castrignano, T., De, Meo, P.D., Cozzetto, D., Talamo, I.G., Tramontano, A. 2006. The PMDB Protein Model Database. Nucleic Acids Res 34, D306–D309.

    PubMed  Article  CAS  Google Scholar 

  9. [9]

    de Groot, A.S., McMurry, J., Marcon, L., Franco, J., Rivera, D., Kutzler, M., Weiner, D., Martin, B. 2005. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 23, 2121–2131.

    PubMed  Article  Google Scholar 

  10. [10]

    Doolan, D.L., Southwood, S., Chesnut, R., Appella, E., Gomez, E., Richards, A., Higashimoto, Y.I., Maewal, A., Sidney, J., Gramzinski, R.A., Mason, C., Koech, D., Hoffman, S.L., Sette A. 2000. HLA-DRpromiscuous T cell epitopes from Plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. J Immunol 165, 1123–1137.

    PubMed  CAS  Google Scholar 

  11. [11]

    Eswar, N., Eramian, D., Webb, B., Shen, M., Sali, A. 2008. Protein structure modeling with MODELLER. Methods Mol Biol 426, 145–159.

    PubMed  Article  CAS  Google Scholar 

  12. [12]

    Eswar, N., Eramian, D., Webb, B., Shen, M.Y., Sali, A. 2006. The detection and characterization of pathogenic Leptospira and the use of OMPs as potential antigens and immunogens. Trop Biomed 23, 194–207.

    Google Scholar 

  13. [13]

    Jenkins, M.K., Khoruts, A., Ingulli, E., Mueller, D.L., McSorley, S.J., Reinhardt, R.L., Itano, A., Pape, K.A. 2001. In vivo activation of antigen-specific CD4 T cells. Annu Rew Immunol 19, 23–45.

    Article  CAS  Google Scholar 

  14. [14]

    Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291.

    Article  CAS  Google Scholar 

  15. [15]

    Lin, X., Sun, A., Ruan, P., Zhang, Z., Yan, J. 2011. Characterization of conserved combined T and B cell epitopes in Leptospira interrogans major outer membrane proteins OmpL1 and LipL41. BMC Microbiol 11, 21.

    PubMed  Article  CAS  Google Scholar 

  16. [16]

    Méndez, R., Leplae, R., Lensink, M.F., Wodak, S.J. 2005. Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures. Proteins 60, 150–169.

    PubMed  Article  Google Scholar 

  17. [17]

    Nascimento, A.L., Verjovski-Almeida, S., van Sluys, M.A., Monteiro-Vitorello, C.B., Camargo, L.E., Digiampietri, L.A., Harstkeerl, R.A., Ho, P.L., Marques, M.V., Oliveira, M.C., Setubal, J.C., Haake, D.A., Martins, E.A. 2004. Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 37, 459–477.

    PubMed  Article  CAS  Google Scholar 

  18. [18]

    Norel, R., Sheinerman, F., Petrey, D., Honig, B. 2001. Electrostatic contributions to protein-protein interactions: Fast energetic filters for docking and their physical basis. Protein Sci 10, 2147–2161.

    PubMed  Article  CAS  Google Scholar 

  19. [19]

    Panigada, M., Sturniolo, T., Besozzi, G., Boccieri, M.G., Sinigaglia, F., Grassi, G.G., Grassi, F. 2002. Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect Immun 70, 79–85.

    PubMed  Article  CAS  Google Scholar 

  20. [20]

    Peters, B., Sette, A. 2007. Integrating epitope data into the emerging web of biomedical knowledge resources. Nat Rev Immunol 7, 485–490.

    PubMed  Article  CAS  Google Scholar 

  21. [21]

    Rakesh, S., Pradhan, D., Umamaheswari, A. 2009. In silico approach for future development of subunit vaccines against Leptospira interrogans serovar Lai. Int J Bioinformatics Res 1, 85–92.

    Google Scholar 

  22. [22]

    Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A., Stevanovic, S. 1999. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.

    PubMed  Article  CAS  Google Scholar 

  23. [23]

    Ren, S.X., Fu, G., Jiang, X.G., Zeng, R., Miao, Y.G., Xu, H., Zhang, Y.X., Xiong, H., Lu, G., Lu, L.F., Jiang, H.Q., Jia, J., Tu, Y.F., Jiang, J.X., Gu, W.Y., Zhang, Y.Q., Cai, Z., Sheng, H.H., Yin, H.F., Zhang, Y., Zhu, G.F., Wan, M., Huang, H.L., Qian, Z., Wang, S.Y., Ma, W., Yao, Z.J., Shen, Y., Qiang, B.Q., Xia, Q.C., Guo, X.K., Danchin, A., Saint, Girons, I., Somerville, R.L., Wen, Y.M., Shi, M.H., Chen, Z., Xu, J.G., Zhao G.P. 2003. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422, 888–893.

    PubMed  Article  CAS  Google Scholar 

  24. [24]

    Ritchie, D.W., Kozakov, D., Vajda, S. 2008. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics 24, 1865–1873.

    PubMed  Article  CAS  Google Scholar 

  25. [25]

    Rudolph, M.G., Wilson, I.A. 2002. The specificity of TCR/pMHC interaction. Curr Opin Immunol 14, 52–65.

    PubMed  Article  CAS  Google Scholar 

  26. [26]

    Serruto, D., Serino, L., Masignani, V., Pizza, M. 2009. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine 27, 3245–3250.

    PubMed  Article  CAS  Google Scholar 

  27. [27]

    Singh, H., Raghava, G.P. 2001. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 17, 1236–1237.

    PubMed  Article  CAS  Google Scholar 

  28. [28]

    Singh, P., Suman, S., Chandna, S., Das, T.K. 2009. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer’s disease. Bioinformation 3, 440–445.

    PubMed  Google Scholar 

  29. [29]

    Smith, G.R., Sternberg, M.J. 2002. Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12, 28–35.

    PubMed  Article  Google Scholar 

  30. [30]

    Southwood, S., Sidney, J., Kondo, A., de Guercio, M.F., Appella, E., Hoffman, S., Kubo, R.T., Chesnut, R.W., Grey, H.M., Sette, A. 1998. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160, 3363–3373.

    PubMed  CAS  Google Scholar 

  31. [31]

    Sylvester-Hvid, C., Kristensen, N., Blicher, T., Ferre, H., Lauemoller, S.L., Wolf, X.A., Lamberth, K., Nissen, M.H., Pedersen, L., Buus, S. 2002. Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction. Tissue Antigens 59, 251–258.

    PubMed  Article  CAS  Google Scholar 

  32. [32]

    Texier, C., Pouvelle, S., Busson, M., Hervé, M., Charron, D., Ménez, A., Maillère, B. 2000. HLADR restricted peptide candidates for bee venom immunotherapy. J Immunol 164, 3177–3184

    PubMed  CAS  Google Scholar 

  33. [33]

    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.

    PubMed  Article  CAS  Google Scholar 

  34. [34]

    Tuero, I., Vinetz, J.M., Klimpel, G.R. 2010. Lack of demonstrable memory T cell responses in humans who have spontaneously recovered from leptospirosis in the Peruvian Amazon. J Infect Dis 201, 420–427.

    PubMed  Article  CAS  Google Scholar 

  35. [35]

    Turesson, C., Matteson, E.L. 2006. Genetics of rheumatoid arthritis. Mayo Clin Proc 81, 94–101.

    PubMed  Article  CAS  Google Scholar 

  36. [36]

    Umamaheswari, A., Pradhan, D., Hemanthkumar M. 2010a. Identification of potential Leptospira phosphoheptose isomerase (GmhA) inhibitors through virtual high-throughput screening. Genomics Proteomics Bioinformatics 8, 246–255.

    PubMed  Article  CAS  Google Scholar 

  37. [37]

    Umamaheswari, A., Pradhan, D., Hemanthkumar M. 2010b. In silico identification of common putative drug targets in Leptospira interrogans. J Chem Biol 4, 165–173.

    Google Scholar 

  38. [38]

    Umamaheswari, A., Pradhan, D., Hemanthkumar M. 2010c. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J Chem Biol 4, 175–187.

    Article  Google Scholar 

  39. [39]

    van der Merwe, P.A., Davis, S.J. 2003. Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21, 659–684.

    PubMed  Article  Google Scholar 

  40. [40]

    Wallner, B., Elofsson, A. 2003. Can correct protein models be identified. Protein Sci 12, 1073–1086.

    PubMed  Article  CAS  Google Scholar 

  41. [41]

    Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., Peters, B. 2008. A Systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4, e1000048.

    PubMed  Article  Google Scholar 

  42. [42]

    Wang. Z., Jin, L., Wegrzyn, A. 2007. Leptospirosis vaccines. Microb Cell Fact 6, 39.

    PubMed  Article  Google Scholar 

  43. [43]

    Wiederstein, M., Sippl, M.J. 2007. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35, W407–W410.

    PubMed  Article  Google Scholar 

  44. [44]

    Zhang, G.L., Khan, A.M., Srinivasan, K.N., August, J.T., Brusic, V. 2005. MULTIPRED: A computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res 33, W172–179.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amineni Umamaheswari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Umamaheswari, A., Pradhan, D. & Hemanthkumar, M. Computer aided subunit vaccine design against pathogenic Leptospira serovars. Interdiscip Sci Comput Life Sci 4, 38–45 (2012). https://doi.org/10.1007/s12539-012-0118-9

Download citation

Key words

  • leptospirosis
  • T-cell epitope
  • MHC
  • ProPred
  • subunit vaccine peptides
  • homology modeling
  • proteinprotein docking