Skip to main content
Log in

Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses

  • Original Articles
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant, D., Moultan, V. 2004. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21, 255–265.

    Article  CAS  PubMed  Google Scholar 

  2. Chouhan, U., Pardasani, K.R. 2010. A linear programming approach to study phylogenetic networks in honeybee. O J B 11, 72–82.

    Google Scholar 

  3. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.67: dnadist, Distributed by the author, Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  4. Glover, F., kuo, C.C., Dhir, K.S. 1995. A discrete optimization model for preserving biological diversity. Appl Math Modelling 19, 696–701.

    Article  Google Scholar 

  5. Gusfield, D., Bansal, V., Bafna, V., Song, Y.S. 2007. A decomposition theory for phylogenetic networks and incompatible characters. J Comput Biol 14, 1247–1272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gusfield, D., Hickerson, D., Eddhu, S. 2007. An efficiently computed lower bound on the number of recombinations in phylogenetic networks: Theory and empirical study. Discrete Appl Math 155, 806–830.

    Article  Google Scholar 

  7. Huson, D.H., Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23, 254–267.

    Article  CAS  PubMed  Google Scholar 

  8. Huson, D.H. 2009. Drawing rooted phylogenetic networks. IEEE/ACM Trans Comput Biol Bioinf 6, 103–109.

    Article  Google Scholar 

  9. Huson, D.H. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.

    Article  CAS  PubMed  Google Scholar 

  10. Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.K. 2005. Constructing a smallest refining galled phylogenetic network. RECOMB, 265–280.

    Google Scholar 

  11. Legendre, P., Makarenkov, V. 2002. Reconstruction of biogeographic and evolutionary networks using reticulograms. Syst Biol 51, 199–216.

    Article  PubMed  Google Scholar 

  12. Legendre, P. 2000. Reticulate evolution: from bacteria to philosopher. J Classif 17, 153–157.

    Article  Google Scholar 

  13. Lockhart, P.J., Penny, D., Hendy, M.D., Lakrum, A.W.D. 1993. Is prochlorothrix hollandica the best choice as a prokaryotic model for higher plant chl-a/b photosynthesis. Photosynth Res 73, 61–68.

    Article  Google Scholar 

  14. Lockhart, P.J., Steel, M.A., Hendy, M.D., Penny, D. 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11, 605–612.

    CAS  PubMed  Google Scholar 

  15. Makarenkov, V. 2001. T-Rex: reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17, 664–668.

    Article  CAS  PubMed  Google Scholar 

  16. Makarenkov, V., Leclerc, B. 1999. An algorithm for the fitting of a tree metric according to a weighted least-squares criterion. J Classif 16, 3–26.

    Article  Google Scholar 

  17. Makarenkov, V., Leclerc, B. 1997. Circular orders of tree metrics and their uses for the reconstruction and fitting of phylogenetic trees. Mathematical hierarchies and Biology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer. Math. Soc. Providence, RI, 183–208.

    Google Scholar 

  18. Makarenkov, V., Legendre, P. 2004. From a phylogenetic tree to a reticulated network. J Comput Biol 11, 195–212.

    Article  CAS  PubMed  Google Scholar 

  19. Makarenkov, V., Kevorkov, D., Legendre, P. 2006. Phylogenetic network construction approaches. Applied Mycology and Biotechnology, International Elsevier Series, Bioinformatics 6, 61–97.

    Article  CAS  Google Scholar 

  20. Mathur, R., Adlakha, N. 2011. A least squares method to determine reticulation in eight grass plastomes. O J B 12, 230–242.

    Google Scholar 

  21. Mathur, R., Adlakha, N. 2012. Evolutionary network to predict the reassortment of avian-human A/H5N1 influenza virus in India. Trends Bioinform. (Published Online First).

    Google Scholar 

  22. Nakhleh, L., Warnow, T., Linder, C.R., John, K.S. 2004. Reconstructing reticulate evolution in species — theory and practice. J Comput Biol 12, 796–811.

    Article  Google Scholar 

  23. Poormohammadi, H., Eslahchi, C. 2012. Constructing rooted phylogenetic networks from triplets based on height function. IJETAE. 2, 389–393.

    Google Scholar 

  24. Rohlf, F.J. 2000. Phylogenetic models and reticulations. J Classif 17, 185–189.

    Article  Google Scholar 

  25. Saitou, N., Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.

    CAS  PubMed  Google Scholar 

  26. Semple, C., Steel, M. 2003. Phylogenetics. Oxford University Press, Oxford, UK.

    Google Scholar 

  27. Sridhar, S., Lam, F., Blelloch, G.E., Ravi, R., Schwartz, R. 2007. Efficiently finding the most parsimonious phylogenetic tree via linear programming. Proc. Of International Symp. Bioinformatics Research and Applications (ISBRA), 37–48.

    Chapter  Google Scholar 

  28. Willson, S. J. 2012. Tree — average distances on certain phylogenetic networks have their weights uniquely determined. Algorithm Mol. Biol. 7: 13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinku Mathur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, R., Adlakha, N. Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses. Interdiscip Sci Comput Life Sci 6, 100–107 (2014). https://doi.org/10.1007/s12539-012-0043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-012-0043-y

Key words

Navigation