The Poisson-Boltzmann theory for the two-plates problem: Some exact results

Article

Abstract

The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

Key words

Poisson-Boltzmann charged colloids ionic systems Debye Length Gouy-Chapmann 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., Hone, D. 1984. Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory. J Chem Phys 80, 5776–5781.CrossRefGoogle Scholar
  2. [2]
    Andelman, D. 1995. Electrostatic properties of membranes: The Poisson-Boltzmann theory. In: Structure and Dynamics of Membranes Generic and Specific Interactions, Elsevier, Amsterdam, 603.CrossRefGoogle Scholar
  3. [3]
    Andrietti, F., Peres, A., Pezzotta, R. 1976. Exact solution of the unidimensional Poisson-Boltzmann equation for a 1:2 (2:1) electrolyte. Biophys J, 16, 1121–1124.PubMedCrossRefGoogle Scholar
  4. [4]
    Boroudjerdi, H., Kim, Y.W., Naji, A., Netz, R.R., Schlagberger, X., Serr, A. 2005. Statics and dynamics of strongly charged soft matter. Phys Rep 416, 129–199.CrossRefGoogle Scholar
  5. [5]
    Chapman, D.L. 1913. Theory of electrocapillarity. Philos Mag 25, 475–481.Google Scholar
  6. [6]
    Debye, P., Hückel, E. 1923. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys Z 24, 185–206.Google Scholar
  7. [7]
    Fogolari, F., Brigo, A., Molinari, H. 2002. The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. J Mol Recognit 15, 377–392.PubMedCrossRefGoogle Scholar
  8. [8]
    Gouy, G. 1910. Sur la constitution de la charge ála surface d’un électrolyte. J Phys (France) 9, 457–468.Google Scholar
  9. [9]
    Gouy, G. 1917. Sur la fonction électrocapillaire. Ann Phys (Paris) 7, 129–184.Google Scholar
  10. [10]
    Grahame, David, C. 1953. Diffuse double layer theory for electrolytes of unsymmetrical valence types. J Chem Phys 21, 1054–1060.CrossRefGoogle Scholar
  11. [11]
    Grosberg, A.Y., Nguyen, T.T., Shklovskii, B.I. 2002. Colloquium: The physics of charge inversion in chemical and biological systems. Rev Mod Phys 74, 329–345.CrossRefGoogle Scholar
  12. [12]
    Levin, Y. 2002. Electrostatic correlations: From plasma to biology. Rep Prog Phys 65, 1577–1632.CrossRefGoogle Scholar
  13. [13]
    Lu, B.Z., Zhou, Y.C., Holst, M.J., McCammon, J.A. 2008. Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun Comput Phys 3, 973–1009.Google Scholar
  14. [14]
    Messina, R. 2009. Electrostatics in soft matter. J Phys: Condens Matter, 21, 113102.CrossRefGoogle Scholar
  15. [15]
    Téllez, G., Trizac, E. 2004. Nonlinear screening of spherical and cylindrical colloids: The case of 1:2 and 2:1 electrolytes. Phys Rev E 70, 011404.CrossRefGoogle Scholar
  16. [16]
    Tracy, C.A., Widom, H. 1997. On exact solutions to the cylindrical Poisson-Boltzmann equation with application to polyelectrolytes. Physica A 244, 402–413.CrossRefGoogle Scholar
  17. [17]
    Verwey, E.J., Overbeek, J.T.G. 1948. Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam.Google Scholar
  18. [18]
    Whittaker, E.T., Watson, G.N. 1902. A course of modern analysis. Cambridge University Press, Cambridge.Google Scholar
  19. [19]
    Xing, X.J. 2011. Poisson-Boltzmann theory for two parallel uniformly charged plates. Phys Rev E 83, 041410.CrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Natural Sciences and Department of PhysicsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations