Skip to main content
Log in

In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab, Scylla serrata

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The enzyme catalase breaks down H2O2, a potentially harmful oxidant, to H2O and O2. Besides oxidase activity, the enzyme also exhibits peroxidase activity. Therefore, it plays an important role in maintaining health and regulating pathophysiology of the organisms. However, 3D structure of this important enzyme in invertebrates particularly in crabs is not yet available. Therefore, an attempt has been made to predict the structure of the crab catalase and to envisage its catalytic interaction with H2O2. A three dimensional model of crab catalase was constructed using the NADPH binding site on Beef Liver catalase from Bos taurus (PDBID: 7CAT) as template by comparative modeling approach. Backbone conformation of the modeled structure by PROCHECK revealed that more than 98% of the residues fell in the allowed regions, ERRAT results confirmed good quality of modeled structure and VERIFY3D profile was satisfying. Molecular docking has been used to know the binding modes of hydrogen peroxide with the crab catalase protein. The receptor structures used for docking were derived from molecular dynamics (MD) simulations of homology modeled structure. The docking results showed that the three important determinant residues Arg68, Val70 and Arg108 in catalase were binding with H2O2 as they had strong hydrogen bonding contacts with the substrate. Our analysis provides insight into the structural properties of crab catalase and defines its active sites for binding with substrate. These data are important for further studies of catalase of invertebrates in general and that of crabs in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altshul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.

    Google Scholar 

  2. Bailey, T.L., Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, Menlo Park, California, 28–36.

  3. Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F., DiNola, A., Haak, J.R. 1984. Molecular dynamics with coupling to an external bath. J Chem Phys 81, 368–3690.

    Article  Google Scholar 

  4. Bermen, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. 2000. The protein data bank. Nucleic Acids Res 28, 235–242.

    Article  Google Scholar 

  5. Bohacova, V., Zamocky, M., Godocikova, J., Buckova, M., Polek, B. 2006. The Expression and diversity of catalases in isolates of genus comamonas in response to the oxidative stress of a polluted environment. Curr Microbiol 53, 430–434.

    Article  PubMed  CAS  Google Scholar 

  6. Boon, E.M., Downs, A., Marcey, D. 2010. Catalase: H2O2: H2O2 Oxidoreductase. http://www.callutheran.edu/BioDev/omm/catalase/cat1.htm.

  7. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. 1993. CHARMm: A program for macromolecular energy minimization and dynamics calculations. J Comp Chem 4, 187–217.

    Article  Google Scholar 

  8. Chris, O., Alessandra, V., Alan, E., Wilfred, F.V.G. 2004. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25, 1656–1676.

    Article  Google Scholar 

  9. Colovos, C., Yeates, T.O. 1993. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci 2, 1511–1519.

    Article  PubMed  CAS  Google Scholar 

  10. Eisenberg, D., Luthy, R., Bowie, J.U. 1997. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol 277, 396–404.

    Article  PubMed  CAS  Google Scholar 

  11. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G. 1995. A smooth particle mesh ewald method. J Chem Phys 103, 8577–8593.

    Article  CAS  Google Scholar 

  12. Ewing, T.J., Makino, S., Skillman, A.G., Kuntz, I.D. 2001. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule database. J Comput Aided Mol Des 15, 411–428.

    Article  PubMed  CAS  Google Scholar 

  13. Fita, I., Rossmann, M.G. 1985. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci USA 82, 1604–1608.

    Article  PubMed  CAS  Google Scholar 

  14. Frishman, D., Argos, P. 1995. Knowledge-based protein secondary structure assignment. Proteins 23, 566–579.

    Article  PubMed  CAS  Google Scholar 

  15. Guex, N., Peitsch, M.C. 1997. SWISS-MODEl and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  16. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M. 1997. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18, 1463–1472.

    Article  CAS  Google Scholar 

  17. Hess, B., Kutzner, C., Spoel, D., Lindahl, E. 2008. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput 4, 435–447.

    Article  CAS  Google Scholar 

  18. Ishida, T., Kinoshita, K. 2007. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460–W464.

    Article  PubMed  Google Scholar 

  19. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  20. Laskoswki, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the sterochemical quality of protein structures. J Appl Cryst 26, 283–291.

    Article  Google Scholar 

  21. Laurie, A.T.R., Jackson, R.M. 2005. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21, 1908–1916.

    Article  PubMed  CAS  Google Scholar 

  22. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B. 2003a. Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  23. Linding, R., Russell, R.B., Neduva, V., Gibson, T.J. 2003b. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31, 3701–3708.

    Article  PubMed  CAS  Google Scholar 

  24. Mates, J.M., Sanchez-Jimenez, F. 1999. Antioxidant enzymes and their implications in pathophysiologic process. Front Biosci 4, 339–345.

    Article  Google Scholar 

  25. McDowall, J. 2010. Catalase. http://www.ebi.ac.uk/interpro/potm/20049/Page1.htm).

  26. Mutsuda, M., Ishikawa, T., Takeda, T., Shigeoka, S. 1996. The catalase-peroxidase of Synechococcus PCC 7942 purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem J 15, 251–257.

    Google Scholar 

  27. Paital, B., Chainy, G.B.N. 2010. Antioxidant defence and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C 151, 142–151.

    Google Scholar 

  28. Sali, A., Blundell, T.L. 1993. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  29. Sali, A., Overington, J.P. 1994. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 31, 1582–1596.

    Article  Google Scholar 

  30. Sali, A., Matsumoto, R., McNeil, H.P., Karplus, M., Stevens, R.L. 1993. Three-dimensional models of four mouse mast cell chymases, identification of proteoglycan-binding regions and protease-specific antigenic epitops. J Biol Chem 268, 9023–9034.

    PubMed  CAS  Google Scholar 

  31. Sali, A., Pottertone, L., Yuan, F., Vlijmen, V.H., Karplus, M. 1995. Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326.

    Article  PubMed  CAS  Google Scholar 

  32. Singh, B.K., Dubey, V.K. 2009. In Silico studies on tryparedoxin peroxidase of Leishmania infantum: Structural aspects. Curr Pharma Biotech 10, 626–630.

    Article  CAS  Google Scholar 

  33. Singh B.K., Nandini, S., Jagannadham, M.V., Dubey, V.K. 2008a. Modeled structure of trypanothione reductase of Leishmania infantum. BMB Reports 41, 444–447.

    Article  PubMed  CAS  Google Scholar 

  34. Singh B.K., Nandini, S., Dubey, V.K. 2008b. Modeled structure of trypanothione synthetase of Leishmania infantum for development of novel therapeutics for leishmaniasis. Curr Trend Biotech & Pharma 2, 390–395.

    CAS  Google Scholar 

  35. Subbarao, N., Haneef, I. 1991. Defining topological equivalences in macromolecules. Protein Eng 4, 877–884.

    Article  PubMed  CAS  Google Scholar 

  36. Switala, J., Loewen, P.C. 2002. Diversity properties among catalase. Arch Biocehm Biophys 401, 145–154.

    Article  CAS  Google Scholar 

  37. Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., Makarenko, A.S., Tanchuk, V.Y., Prokopenko, V.V. 2005. Virtual computational chemistry laboratory — design and description. J Comput Aided Mol Des 19, 453–463.

    Article  PubMed  CAS  Google Scholar 

  38. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  39. Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program. J Mol Graph 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

  40. Wallace, A.C., Laskowski, R.A., Thornton, J.M. 1995. LIGPLOT: A program to generate schematic diagrams of protein-ligand interaction. Protein Eng 8, 127–134.

    Article  PubMed  CAS  Google Scholar 

  41. Wang, R., Lu, Y., Wang, S. 2003. Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46, 2287.

    Article  PubMed  CAS  Google Scholar 

  42. Winston, G.W., Giulio, R.T.D. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Txicol 19, 137–161.

    Article  CAS  Google Scholar 

  43. Wood, J.M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J.D., Hasse, S., Thornton, M.J., Shalbaf, M., Paus, R., Schallreuter, K.U. 2009. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. Faseb J 23, 2065–2075.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Z.R., Thomson, R., McNeil, P., Esnouf, R.M. 2005. RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376.

    Article  PubMed  CAS  Google Scholar 

  45. Zdobnov, E.M., Apweiler, R. 2001. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paital, B., Kumar, S., Farmer, R. et al. In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab, Scylla serrata. Interdiscip Sci Comput Life Sci 3, 110–120 (2011). https://doi.org/10.1007/s12539-011-0071-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0071-z

Key words

Navigation