Skip to main content
Log in

Computer simulations of quantum tunnelling in enzyme-catalysed hydrogen transfer reactions

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Transfer of hydrogen as a proton, hydride or hydrogen atom is an important step in many enzymic reactions. Experiments show kinetic isotope effects (KIEs) for some enzyme-catalysed hydrogen transfer reactions that deviate significantly from the limits imposed by considering the differences in mass of the isotopes alone (i.e. the semiclassical limit). These KIEs can be explained if the transfer of the hydrogen species occurs via a quantum mechanical tunnelling mechanism. The unusual temperature dependence of some KIEs has led to suggestions that enzymes have evolved to promote tunnelling through dynamics — a highly controversial hypothesis. Molecular simulations have a vital role in resolving these questions, providing a level of detail of analysis not possible through experiments alone. Here, we review computational molecular modelling studies of quantum tunnelling in enzymes, in particular focusing on the enzymes soybean lipoxygenase-1 (SLO-1), dihydrofolate reductase (DHFR), methylamine dehydrogenase (MADH) and aromatic amine dehydrogenase (AADH) to illustrate the current controversy regarding the importance of quantum effects in enzyme catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Billeter, S.R., Hammes-Schiffer, S. 2002. Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis. J Phys Chem B 106, 3283–3293.

    Article  CAS  Google Scholar 

  2. Agarwal, P.K., Billeter, S.R., Rajagopalan, P.T., Benkovic, S.J., Hammes-Schiffer, S. 2002. Network of coupled promoting motions in enzyme catalysis. Proc Natl Acad Sci USA 99, 2794–2799.

    Article  PubMed  CAS  Google Scholar 

  3. Agrawal, N., Hong, B., Mihai, C., Kohen, A. 2004. Vibrationally enhanced hydrogen tunneling in the Es cherichia coli thymidylate synthase catalyzed reaction. Biochemistry 43, 1998–2006.

    Article  PubMed  CAS  Google Scholar 

  4. Alhambra, C., Corchado, J., Sanchez, M., Gao, J., Truhlar, D. 2000. Quantum dynamics of hydride transfer in enzyme catalysis. J Am Chem Soc 122, 8197–8203.

    Article  CAS  Google Scholar 

  5. Alhambra, C., Gao, J., Corchado, J., Villa, J., Truhlar, D.G. 1999. Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction. J Am Chem Soc 121, 2253–2258.

    Article  CAS  Google Scholar 

  6. Alhambra, C., Sanchez, M.L., Corchado, J., Gao, J., Truhlar, D.G. 2001. Quantum mechanical tunneling in methylamine dehydrogenase. Chem Phys Lett 347, 512–518; 2002, erratum 355, 388–394.

    Article  CAS  Google Scholar 

  7. Allemann, R.K., Scrutton, N.S. (Eds.) 2009. Quantum tunnelling in enzyme-catalysed reactions. RSC, Cambridge, UK.

    Google Scholar 

  8. Antoniou, D., Caratzoulas, S., Kalyanaraman, C., Mincer, J.S., Schwartz, S.D. 2002. Barrier passage and protein dynamics in enzymatically catalyzed reactions. Eur J Biochem 269, 3103–3112.

    Article  PubMed  CAS  Google Scholar 

  9. Antoniou, D., Schwartz, S.D. 1997. Large kinetic isotope effects in enzymatic proton transfer and the role of substrate oscillations. Proc Natl Acad Sci U.S.A. 94, 12360–12365.

    Article  PubMed  CAS  Google Scholar 

  10. Antoniou, D., Schwartz, S.D. 2001. Internal enzyme motions as a source of catalytic activity: Rate-promoting vibrations and hydrogen tunneling. J Phys Chem B 105, 5553–5558.

    Article  CAS  Google Scholar 

  11. Arnaut, L.G., Pais, A., Formosinho, S.J., Barroso, M. 2003. Absolute rate calculations for atom abstractions by radicals: Energetic, structural and electronic factors. J Am Chem Soc 125, 5236–5246.

    Article  PubMed  CAS  Google Scholar 

  12. Atkins, P., de Paula, J. 2001. Atkins’ Physical Chemistry, 7th Edition. Oxford University Press, Oxford, UK.

    Google Scholar 

  13. Bahnson, B.J., Klinman, J.P. 1995. Hydrogen tunneling in enzyme catalysis. Methods Enzymol 249, 373–397.

    Article  PubMed  CAS  Google Scholar 

  14. Bahnson, B.J., Park, D.H., Kim, K., Plapp, B.V., Klinman, J.P. 1993. Unmasking of hydrogen tunneling in the horse liver alcohol dehydrogenase reaction by site directed mutagenesis. Biochemistry 32, 5503–5507.

    Article  PubMed  CAS  Google Scholar 

  15. Barroso, M., Arnaut L.G., Formosinho, S.J. 2007. Absolute rate calculations. Proton transfers in solution. J Phys Chem A 111, 591–602.

    Article  PubMed  CAS  Google Scholar 

  16. Barroso, M., Arnaut L.G., Formosinho, S.J. 2008. A chemical understanding for the enhanced hydrogen tunnelling in hydroperoxidation of linoleic acid catalysed by soybean lipoxygenase-1. J Phys Org Chem 21, 659–665.

    Article  CAS  Google Scholar 

  17. Barroso, M., Arnaut L.G., Formosinho, S.J. 2009. The role of reaction energy and hydrogen bonding in the reaction path of enzymatic proton transfers. J Phys Org Chem 22, 254–263.

    Article  CAS  Google Scholar 

  18. Basran, J., Harris, R.J., Sutcliffe, M.J., Scrutton, N.S. 2003. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase. J Biol Chem 278, 43973–43982.

    Article  PubMed  CAS  Google Scholar 

  19. Basran, J., Patel, S., Sutcliffe, M.J., Scrutton, N.S. 2001. Importance of barrier shape in enzyme-catalyzed reactions — vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases. J Biol Chem 276, 6234–6242.

    Article  PubMed  CAS  Google Scholar 

  20. Basran, J., Sutcliffe, M.J., Scrutton, N.S. 1999. Enzymatic H-transfer requires vibration-driven extreme tunneling. Biochemistry 38, 3218–3222.

    Article  PubMed  CAS  Google Scholar 

  21. Basran, J., Sutcliffe, M.J., Scrutton, N.S. 2001. Deuterium isotope effects during C-H bond cleavage by trimethylamine dehydrogenase: implications for mechanism and vibrationally assisted H-tunneling in wild-type and mutant enzymes. J Biol Chem 276, 24581–24587.

    Article  PubMed  CAS  Google Scholar 

  22. Bathelt, C.M., Mulholland, A.J., Harvey, J.N. 2008. QM/MM modelling of benzene hydroxylation in human cytochrome P450 2C9. J Phys Chem A 112, 13149–13156.

    Article  PubMed  CAS  Google Scholar 

  23. Bell, R.P. 1959. The tunnel effect correction for parabolic potential barriers. Trans Faraday Soc 1959, 1–4.

    Article  Google Scholar 

  24. Bell, R.P. 1980. The tunnel effect in chemistry. London, Chapman and Hall, 51–140.

    Google Scholar 

  25. Benkovic, S.J., Hammes-Schiffer, S. 2003. A perspective on enzyme catalysis. Science 301, 1196–1202.

    Article  PubMed  CAS  Google Scholar 

  26. Billeter, S.R., Webb, S.P., Agarwal, P.K., Iordanov, T., Hammes-Schiffer, S. 2001. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion. J Am Chem Soc 123, 11262–11272.

    Article  PubMed  CAS  Google Scholar 

  27. Billeter, S.R., Webb, S.P., Iordanov, T., Agarwal, P.K., Hammes-Schiffer, S. 2001. Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes. J Chem Phys 114, 6925–6936.

    Article  CAS  Google Scholar 

  28. Brooks, H.B., Jones, L.H., Davidson, V.L. 1993. Deuterium kinetic isotope effect and stopped-flow kineticstudies of the quinoprotein methylamine dehydrogenase. Biochemistry 32, 2725–2729.

    Article  PubMed  CAS  Google Scholar 

  29. Caratzoulas, S., Mincer, J.S., Schwartz, S.D. 2002. Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase. J Am Chem Soc 124, 3270–3276.

    Article  PubMed  CAS  Google Scholar 

  30. Cha, Y., Murray, C.J., Klinman, J.P. 1989. Hydrogen tunneling in enzyme reactions. Science 243, 1325–1330.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, L.Y., Doi, N., Durley, R.C.E., Chistoserdov, A.Y., Lidstrom, M.E., Davidson, V.L., Mathews, F.S. 1998. Refined crystal structure of methylamine dehydrogenase from paracoccus denitrificans at 1.75 angstrom resolution. J Mol Biol 276, 131–149.

    Article  PubMed  CAS  Google Scholar 

  32. Claeyssens, F., Harvey, J.N., Manby, F.R., Mata, R.A., Mulholland, A.J., Ranaghan, K.E., Schütz, M., Thiel, S., Thiel, W., Werner, H.-J. 2006. High-accuracy computation of reaction barriers in enzymes. Angew Chem Int Edit 45, 6856–6859.

    Article  CAS  Google Scholar 

  33. Claeyssens, F., Ranaghan, K.E., Manby, F.R., Harvey, J.N., Mulholland, A.J. 2005. Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem Commun 40, 5068–5070.

    Article  CAS  Google Scholar 

  34. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Freguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W.M., Kollman, P.A. 1995. AMBER. J Am Chem Soc 117, 5179.

    Article  CAS  Google Scholar 

  35. Dams, T., Auerbach, G., Bader, G., Jacob, U., Ploom, T., Huber, R., Jaenicke, R. 2000. The crystal structure of dihydrofolate reductase from Thermotoga maritima: Molecular features of thermostability. J Mol Biol 297, 659–672.

    Article  PubMed  CAS  Google Scholar 

  36. Davidson, V.L. 1993. Principles and applications of quinoproteins. Marcel Dekker, New York.

    Google Scholar 

  37. Doll, K.M., Bender, B.R., Finke, R.G. 2003. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. J Am Chem Soc 125, 10877–10884.

    Article  PubMed  CAS  Google Scholar 

  38. Doll, K.M., Finke, R.G. 2003. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: The beta-neopentylcobalamin system combined with prior adocobalamin data. Inorg Chem 42, 4849–4856.

    Article  PubMed  CAS  Google Scholar 

  39. Epstein, D.M., Benkovic, S.J., Wright, P.E. 1995. Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features. Biochemistry 34, 11037–11048.

    Article  PubMed  CAS  Google Scholar 

  40. Faulder, P.F., Tresadern, G., Chohan, K.K., Scrutton, N.S., Sutcliffe, M.J., Hillier, I.H., Burton, N.A. 2001. QM/MM studies show substantial tunneling for the hydrogen-transfer reaction in methylamine dehydrogenase. J Am Chem Soc 123, 8604–8605.

    Article  PubMed  CAS  Google Scholar 

  41. Fernandez-Ramos, A., Truhlar, D.G. 2001. Improved algorithm for corner-cutting tunneling calculations. J Chem Phys 114, 1491–1496.

    Article  CAS  Google Scholar 

  42. Fersht, A. 1999. Structure and mechanism in protein science. A guide to enzyme catalysis and protein folding. Freeman, New York.

    Google Scholar 

  43. Feynman, R.P. 1972. Statistical mechanics. Benjamin, New York.

    Google Scholar 

  44. Fierke, C.A., Johnson, K.A., Benkovic, S.J. 1987. Construction and valuation of the kinetic scheme associated with dihydrofolate-reductase from Escherichia-Coli. Biochemistry 26, 4085–4092.

    Article  PubMed  CAS  Google Scholar 

  45. Francisco, W.A., Knapp, M.J., Blackburn, N.J., Klinman, J.P. 2002. Hydrogen tunneling in peptidylglycine alpha-hydroxylating monooxygenase. J Am Chem Soc 124, 8194–8195.

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Viloca, M., Alhambra, C., Truhlar, D.G., Gao, J.L. 2003. Hydride transfer catalyzed by xylose isomerase: Mechanism and quantum effects. J Comput Chem 24, 177–190.

    Article  PubMed  CAS  Google Scholar 

  47. Garcia-Viloca, M., Gao, J., Karplus, M., Truhlar, D.G. 2004. How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186–195.

    Article  PubMed  CAS  Google Scholar 

  48. Garcia-Viloca, M., Truhlar, D.G., Gao, J. 2003. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Biochemistry 42, 13558–13575.

    Article  PubMed  CAS  Google Scholar 

  49. González-Lafont, A., Truong, T.N., Truhlar, D.G. 1991. Direct dynamics calculations with neglect of diatomic differential overlap molecular orbital theory with specific reaction parameters. J Phys Chem 95, 4618–4627.

    Article  Google Scholar 

  50. Grant, K.L., Klinman, J.P. 1989. Evidence that protium and deuterium undergo significant tunneling in the reaction catalyzed by bovine serum amine oxidase. Biochemistry 28, 6597–6605.

    Article  PubMed  CAS  Google Scholar 

  51. Hammes-Schiffer, S. 2002. Impact of enzyme motion on activity. Biochemistry 41, 13335–13343.

    Article  PubMed  CAS  Google Scholar 

  52. Hammes-Schiffer, S. 2004. Quantum-classical simulation methods for hydrogen transfer in enzymes: a case study of dihydrofolate reductase. Curr Opin Struct Biol 14, 192–201.

    Article  PubMed  CAS  Google Scholar 

  53. Hammes-Schiffer, S., Tully, J.C. 1994. Protontransfer in solution-molecular-dynamics with quantum transitions. J Chem Phys 101, 4657–4667.

    Article  CAS  Google Scholar 

  54. Hatcher, E., Soudackov, A.V., Hammes-Schiffer, S. 2004. Proton-coupled electron transfer in soybean lipoxygenase. J Am Chem Soc 126, 5763–5775.

    Article  PubMed  CAS  Google Scholar 

  55. Hatcher, E., Soudackov, A.V., Hammes-Schiffer, S. 2007. Proton-coupled electron transfer in soybean lipoxygenase: Dynamical behavior and temperature dependence of kinetic isotope effects. J Am Chem Soc 129, 187–196.

    Article  PubMed  CAS  Google Scholar 

  56. Hay, S., Pudney, C.R., McGrory, T.A., Pang, J.Y., Sutcliffe, M.J., Scrutton, N.S. 2009. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Angew Chem Int Edit 48, 1452–1454.

    Article  CAS  Google Scholar 

  57. Hay, S., Scrutton, N.S. 2008. Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations. Biochemistry 47, 9880–9887.

    Article  PubMed  CAS  Google Scholar 

  58. Hay, S., Sutcliffe, M.J., Scrutton, N.S. 2007. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Proceedings of the Natl Acad Sci USA 104, 507–512.

    Article  CAS  Google Scholar 

  59. Hayward, D.O. 2004. Quantum mechanics for chemists. J Wiley & Sons, Chichester, UK.

    Google Scholar 

  60. Hwang, J.K., Chu, Z.T., Yadav, A., Warshel, A. 1991. Simulations of quantum-mechanical corrections for rate constants of hydride-transfer reactions in enzymes and solutions. J Phys Chem 95, 8445–8448.

    Article  CAS  Google Scholar 

  61. Hwang, J.K., Warshel, A. 1996. How important are quantum mechanical nuclear motions in enzyme catalysis? J Am Chem Soc 118, 11745–11751.

    Article  CAS  Google Scholar 

  62. Iyengar, S.S., Sumner, I., Jakowski, J. 2008. Hydrogen tunneling in an enzyme active site: A quantum wavepacket dynamical perspective. J Phys Chem B 112, 7601–7613.

    Article  PubMed  CAS  Google Scholar 

  63. Johannissen, L.O., Hay, S., Scrutton, N.S., Sutcliffe, M.J. 2007. Proton tunneling in aromatic amine dehydrogenase is driven by a short-range sub-picosecond promoting vibration: Consistency of simulation and theory with experiment. J Phys Chem B 111, 2631–2638.

    Article  PubMed  CAS  Google Scholar 

  64. Johannissen, L.O., Scrutton, N.S., Sutcliffe, M.J. 2008. The enzyme aromatic amine dehydrogenase induces a substrate conformation crucial for promoting vibration that significantly reduces the effective potential energy barrier to proton transfer. J R Soc Interface 5, S225–S232.

    Article  PubMed  CAS  Google Scholar 

  65. Jonsson, T., Glickman, M.H., Sun, S.J., Klinman, J.P. 1996. Experimental evidence for extensive tunneling of hydrogen in the lipoxygenase reaction: Implications for enzyme catalysis. J Am Chem Soc 118, 10319–10320.

    Article  CAS  Google Scholar 

  66. Klinman, J.P. 2003. Dynamic barriers and tunneling. New views of hydrogen transfer in enzyme reactions. Pure and Applied Chemistry 75, 601–608.

    Article  CAS  Google Scholar 

  67. Klinman, J.P. 2009. An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling. Chem Phys Lett 471, 179–193.

    Article  CAS  Google Scholar 

  68. Knapp, M.J., Klinman, J.P. 2002. Environmentally coupled hydrogen tunneling. Linking catalysis to dynamics. Eur J Biochem. 269, 3113–3121.

    Article  PubMed  CAS  Google Scholar 

  69. Knapp, M.J., Rickert, K., Klinman, J.P. 2002. Temperature-dependent isotope effects in soybean lipoxygenase- 1: Correlating hydrogen tunneling with protein dynamics. J Am Chem Soc 124, 3865–3874.

    Article  PubMed  CAS  Google Scholar 

  70. Kohen, A., Cannio, R., Bartolucci, S., Klinman, J.P. 1999. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399, 496–499.

    Article  PubMed  CAS  Google Scholar 

  71. Kohen, A., Jensen, J.H. 2002. Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling. J Am Chem Soc 124, 3858–3864.

    Article  PubMed  CAS  Google Scholar 

  72. Kohen, A., Klinman, J.P. 1998. Enzyme catalysis: Beyond classical paradigms. Acc Chem Res 31, 397–404.

    Article  CAS  Google Scholar 

  73. Kohen, A., Klinman, J.P. 1999. Hydrogen tunneling in biology. Chem Biol 6, R191–R198.

    Article  PubMed  CAS  Google Scholar 

  74. Kraut, J. 1988. How do enzymes work? Science 242, 533–540.

    Article  PubMed  CAS  Google Scholar 

  75. Kuznetsov, A.M., Ulstrup, J. 1999. Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can J Chem 77, 1085–1096.

    Article  CAS  Google Scholar 

  76. Lehnert, N., Solomon, E.I. 2003. Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase. J Biol Inorg Chem 8, 294–305.

    PubMed  CAS  Google Scholar 

  77. Li, J.W.H., Vederas, J.C. 2009. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–165.

    Article  PubMed  CAS  Google Scholar 

  78. Lippincott, E.R., Schroeder, R. 1955. One-dimensional model of the hydrogen bond. J Chem Phys 23, 1099–1106.

    Article  CAS  Google Scholar 

  79. Liu, H.B., Warshel, A. 2007a. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46, 6011–6025.

    Article  PubMed  CAS  Google Scholar 

  80. Liu, H.B., Warshel, A. 2007b. Origin of the temperature dependence of isotope effects in enzymatic reactions: The case of dihydrofolate reductase. J Phys Chem B 111, 7852–7861.

    Article  PubMed  CAS  Google Scholar 

  81. Liu, Y.P., Lu, D.H., Gonzalezlafont, A., Truhlar, D.G., Garrett, B.C. 1993. Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions. J Am Chem Soc 115, 7806–7817.

    Article  CAS  Google Scholar 

  82. Liu, Y.P., Lynch, G.C., Truong, T.N., Lu, D.H., Truhlar, D.G., Garrett, B.C. 1993. Molecular modeling of the kinetic isotope effect for the [1,5] sigmatropic rearrangement of cis-1,3-pentadiene. J Am Chem Soc 115, 2408–2415.

    Article  CAS  Google Scholar 

  83. Lu, D.H., Truong, T.N., Melissas, V.S., Lynch, G.C., Liu, Y.P., Garrett, B.C., Steckler, R., Isaacson, A.D., Rai, S.N., Hancock, G.C., Lauderdale, J.G., Joseph, T., Truhlar, D.G. 1992. Polyrate-4 — a new version of a computer-program for the calculation of chemicalreaction rates for polyatomics. Comput Phys Commun 71, 235–262.

    Article  CAS  Google Scholar 

  84. Maglia, G., Allemann, R.K. 2003. Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis. J Am Chem Soc 125, 13372–13373.

    Article  PubMed  CAS  Google Scholar 

  85. Major, D.T., Garcia-Viloca, M., Gao, J.L. 2006. Path integral simulations of proton transfer reactions in aqueous solution using combined QM/MM potentials. J Chem Theory Comput 2, 236–245.

    Article  CAS  Google Scholar 

  86. Marcus, R.A., Sutin, N. 1985. Electron transfers in chemistry and biology. Biochim Biophys Acta 811, 265–322.

    CAS  Google Scholar 

  87. Masgrau, L., Basran, J., Hothi, P., Sutcliffe, M.J., Scrutton, N.S. 2004. Hydrogen tunneling in quinoproteins. Arch Biochem Biophys 428, 41–51.

    Article  PubMed  CAS  Google Scholar 

  88. Masgrau, L., Ranaghan, K.E., Scrutton, N.S., Mulholland, A.J., Sutcliffe, M.J. 2007. Tunneling and classical paths for proton transfer in an enzyme reaction dominated by tunneling: oxidation of tryptamine by aromatic amine dehydrogenase. J Phys Chem B 111, 3032–3047.

    Article  PubMed  CAS  Google Scholar 

  89. Masgrau, L., Ranaghan, K.E., Scrutton, N.S., Mulholland, A.J., Sutcliffe, M.J. (Unpublished data).

  90. Masgrau, L., Roujeinikova, A., Johannissen, L.O., Hothi, P., Basran, J., Ranaghan, K.E., Mulholland, A.J., Sutcliffe, M.J., Scrutton, N.S., Leys, D. 2006. Atomic description of an enzyme reaction dominated by proton tunneling. Science 312, 237–241.

    Article  PubMed  CAS  Google Scholar 

  91. Mavri, J., Liu, H.B., Olsson, M.H.M., Warshel, A. 2008. Simulation of tunneling in enzyme catalysis by combining a biased propagation approach and the quantum classical path method: Application to lipoxygenase. J Phys Chem B 112, 5950–5954.

    Article  PubMed  CAS  Google Scholar 

  92. Meyer, M.P., Tomchick, D.R., Klinman, J.P. 2008. Enzyme structure and dynamics affect hydrogen tunneling: The impact of a remote side chain (I553) in soybean lipoxygenase-1 (vol 105, pg 1146, 2008). Proc Natl Acad Sci USA 105, 19562–19562.

    CAS  Google Scholar 

  93. Mincer, J.S., Schwartz, S.D. 2003. A computational method to identify residues important in creating a protein promoting vibration in enzymes. J Phys Chem B 107, 366–371.

    Article  CAS  Google Scholar 

  94. Mincer, J.S., Schwartz, S.D. 2004. Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: A model for enzymic catalysis. J Chem Phys 120, 7755–7760.

    Article  PubMed  CAS  Google Scholar 

  95. Morrison, J. F, Stone, S.R. 1988. Mechanism of the reaction catalyzed by dihydrofolate-reductase from Escherichia-Coli — pH and deuterium-isotope effects with NADPH as the variable substrate. Biochemistry 27, 5499–5506.

    Article  PubMed  CAS  Google Scholar 

  96. Mulholland, A.J. 2005. Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discovery Today 10, 1393–1402.

    Article  PubMed  CAS  Google Scholar 

  97. Nicoll, A.J., Allemann, R.K. 2004. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase. Org Biomol Chem 2, 2175–2180.

    Article  PubMed  CAS  Google Scholar 

  98. Nunez, S., Tresadern, G., Hillier, I.H., Burton, N.A. 2006. An analysis of reaction pathways for proton tunnelling in methylamine dehydrogenase. Phil Trans R Soc B 361, 1387–1398.

    Article  PubMed  CAS  Google Scholar 

  99. Olsson, M.H.M., Mavri, J., Warshel, A. 2006. Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems. Philosophical Phil Trans R Soc B 361, 1417–1432.

    Article  CAS  Google Scholar 

  100. Olsson, M.H.M., Parson, W.W., Warshel, A. 2006. Dynamical contributions to enzyme catalysis: Critical tests of a popular hypothesis. Chem Rev 106, 1737–1756.

    Article  PubMed  CAS  Google Scholar 

  101. Olsson, M.H., Siegbahn, P.E., Warshel, A. 2004. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. J Am Chem Soc 126, 2820–2828.

    Article  PubMed  CAS  Google Scholar 

  102. Pang, J.Y., Hay, S., Scrutton, N.S., Sutcliffe, M.J. 2008. Deep tunneling dominates the biologically important hydride transfer reaction from NADH to FMN in morphinone reductase. J Am Chem Soc 130, 7092–7097.

    Article  PubMed  CAS  Google Scholar 

  103. Pang, J.Y., Pu, J.Z., Gao, J., Truhlar, D.G., Allemann, R.K. 2006. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions. J Am Chem Soc 128, 8015–8023.

    Article  PubMed  CAS  Google Scholar 

  104. Panke, S., Wubbolts, M. 2005. Advances in biocatalytic synthesis of pharmaceutical intermediates. Curr Opin Chem Biol 9, 188–194.

    Article  PubMed  CAS  Google Scholar 

  105. Parr, R.G., Von Szentpaly, L., Liu, S.B. 1999. Electrophilicity index. J Am Chem Soc 121, 1922–1924.

    Article  CAS  Google Scholar 

  106. Pauling, L. 1948. Chemical achievement and hope for the future. Am Sci 36, 51–58.

    PubMed  CAS  Google Scholar 

  107. Pierdominici-Sottile, G., Echave, J., Palma, J. 2005. Quantum study of the structure of the active site of methylamine dehydrogenase. Int J Quantum Chem 105, 937–945.

    Article  CAS  Google Scholar 

  108. Pierdominici-Sottile, G., Palma, J. 2009. Evaluation of the kinetic isotope effect in methylamine dehydrogenase using the wave function propagation approach. Chemical Physics 363, 59–64.

    Article  CAS  Google Scholar 

  109. Pu, J.Z., Gao, J., Truhlar, D. 2006. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106, 3140–3169.

    Article  PubMed  CAS  Google Scholar 

  110. Pu, J.Z., Ma, S.H., Gao, J.L., Truhlar, D.G. 2005. Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase. J Phys Chem B 109, 8551–8556.

    Article  PubMed  CAS  Google Scholar 

  111. Pudney, C.R., McGrory, T., Lafite, P., Pang, J.Y., Hay, S., Leys, D., Sutcliffe, M.J., Scrutton, N.S. 2009. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. Chembiochem 10, 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  112. Ranaghan, K.E. 2006. Investigations of enzyme-catalysed reactions by QM/MM methods. School of Chemistry, University of Bristol.

  113. Ranaghan, K.E., Masgrau, L., Scrutton, N.S., Sutcliffe, M.J., Mulholland, A.J. 2007. Analysis of classical and quantum paths for deprotonation of methylamine by methylamine dehydrogenase. ChemPhysChem 8, 1816–1835.

    Article  PubMed  CAS  Google Scholar 

  114. Ranaghan, K.E., Mulholland, A.J. 2010. Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. Int Rev Phys Chem. In press.

  115. Ranaghan, K.E., Ridder, L., Szefczyk, B., Sokalski, W.A., Hermann, J.C., Mulholland, A.J. 2003. Insights into enzyme catalysis from QM/MM modelling: transition state stabilization in chorismate mutase. Mol Phys 101, 2695–2714.

    Article  CAS  Google Scholar 

  116. Ranaghan, K.E., Ridder, L., Szefczyk, B., Sokalski, W.A., Hermann, J.C., Mulholland, A.J. 2004. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Org Biomol Chem 2, 968–980.

    Article  PubMed  CAS  Google Scholar 

  117. Rickert, K.W., Klinman, J.P. 1999. Nature of hydrogen transfer in soybean lipoxygenase 1: separation of primary and secondary isotope effects. Biochemistry 38, 12218–12228.

    Article  PubMed  CAS  Google Scholar 

  118. Ridder, L., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J. 2002. Quantum mechanical/molecular mechanical free energy Simulations of the glutathione Stransferase (M1-1) reaction with phenanthrene 9,10- oxide. J Am Chem Soc 124, 9926–9936.

    Article  PubMed  CAS  Google Scholar 

  119. Schneider, M.E., Stern, M.J. 1972. Arrhenius preexponential factors for primary hydrogen kinetic isotope effects. J Am Chem Soc 94, 1517–1522.

    Article  CAS  Google Scholar 

  120. Senn, H.M., Thiel, W. 2009. QM/MM methods for biomolecular systems. Angew Chem Int Edit 48, 1198–1229.

    Article  CAS  Google Scholar 

  121. Sharma, S.C., Klinman, J.P. 2008. Experimental evidence for hydrogen tunneling when the isotopic arrhenius prefactor (A(H)/A(D)) is unity. J Am Chem Soc 130, 17632–17633.

    Article  PubMed  CAS  Google Scholar 

  122. Siebrand, W., Smedarchina, Z. 2004. Temperature dependence of kinetic isotope effects for enzymatic carbon-hydrogen bond cleavage. J Phys Chem B 108, 4185–4195.

    Article  CAS  Google Scholar 

  123. Siegbahn, P.E.M., Himo, F. 2009. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14, 643–651.

    Article  PubMed  CAS  Google Scholar 

  124. Sikorski, R.S., Wang, L., Markham, K.A., Rajagopalan, P.T.R., Benkovic, S.J., Kohen, A. 2004. Tunneling and coupled motion in the Escherichia coli dihydrofolate reductase catalysis. J Am Chem Soc 126, 4778–4779.

    Article  PubMed  CAS  Google Scholar 

  125. Smith, W.L., Lands, W.E.M. 1972. Oxygenation of unsaturated fatty-acids by soybean lipoxygenase. Journal of Biol Chem 247, 1038–1047.

    CAS  Google Scholar 

  126. Soudackov, A., Hatcher, E., Hammes-Schiffer, S. 2005. Quantum and dynamical effects of proton donor-acceptor vibrational motion in nonadiabatic proton-coupled electron transfer reactions. J Chem Phys 122, 014505.

    Article  CAS  Google Scholar 

  127. Sun, D.P., Jones, L.H., Mathews, F.S., Davidson, V.L. 2001. Active-site residues are critical for the folding and stability of methylamine dehydrogenase. Protein Engineering 14, 675–681.

    Article  PubMed  CAS  Google Scholar 

  128. Sutcliffe, M.J., Masgrau, L., Roujeinikova, A., Johannissen, L.O., Hothi, P., Basran, J., Ranaghan, K.E., Mulholland, A.J., Leys, D., Scrutton, N.S. 2006. Hydrogen tunnelling in enzyme-catalysed H-transfer reactions: flavoprotein and quinoprotein systems. Phil Trans R Soc B 361, 1375–1386.

    Article  PubMed  CAS  Google Scholar 

  129. Sutcliffe, M.J., Scrutton, N.S. 2000. Enzymology takes a quantum leap forward. Phil Trans Roy Soc Ser A 358, 367–386.

    Article  CAS  Google Scholar 

  130. Swanwick, R.S., Maglia, G., Tey, L., Allemann, R.K. 2006. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase. Biochem J 394, 259–265.

    Article  PubMed  CAS  Google Scholar 

  131. Swanwick, R.S., Shrimpton, P.J., Allemann, R.K. 2004. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: The altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Biochemistry 43, 4119–4127.

    Article  PubMed  CAS  Google Scholar 

  132. Tehei, M., Smith, J.C., Monk, C., Ollivier, J., Oettl, M., Kurkal, V., Finney, J.L., Daniel, R.M. 2006. Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering. Biophysical Journal 90, 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  133. Tejero, I., Garcia-Viloca, M., Gonzalez-Lafont, A., Lluch, J.M., York, D.M. 2006. Enzyme dynamics and tunneling enhanced by compression in the hydrogen abstraction catalyzed by soybean lipoxygenase-1. J Phys Chem 110, 24708–24719.

    CAS  Google Scholar 

  134. Thorpe, I.F., Brooks, C.L. 2004. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase. Proteins: Struct Funct and Bioinf 57, 444–457.

    Article  CAS  Google Scholar 

  135. Thorpe, I.F., Brooks, C.L. 2005. Conformational substates modulate hydride transfer in dihydrofolate reductase. J Am Chem Soc 127, 12997–13006.

    Article  PubMed  CAS  Google Scholar 

  136. Tresadern, G., McNamara, J.P., Mohr, M., Wang, H., Burton, N.A., Hillier, I.H. 2002. Calculations of hydrogen tunnelling and enzyme catalysis: a comparison of liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase. Chem Phys Lett 358, 489–494.

    Article  CAS  Google Scholar 

  137. Tresadern, G., Nunez, S., Faulder, P.F., Wang, H., Hillier, I.H., Burton, N.A. 2003. Direct dynamics calculations of reaction rate and kinetic isotope effects in enzyme catalysed reactions. Faraday Discussions 122, 223–242.

    Article  PubMed  CAS  Google Scholar 

  138. Tresadern, G., Wang, H., Faulder, P.F., Burton, N.A., Hillier, I.H. 2003. Extreme tunnelling in methylamine dehydrogenase revealed by hybrid QM/MM calculations: potential energy surface profile for methylamine and ethanolamine substrates and kinetic isotope effect values. Mol Phys 101, 2775–2784.

    Article  CAS  Google Scholar 

  139. Truhlar, D.G. 2005. Isotope effects in chemistry and biology. Limbach, A. (Ed) Marcel Dekker, Inc., New York.

    Google Scholar 

  140. Truhlar, D.G., Gao, J., Alhambra, C., Garcia-Viloca, M., Corchado, J., Sánchez, M., Villà, J. 2002. The incorporation of quantum effects in enzyme kinetics modeling. Acc Chem Res 35, 341–349.

    Article  PubMed  CAS  Google Scholar 

  141. Truhlar, D.G., Gao, J.L., Garcia-Viloca, M., Alhambra, C., Corchado, J., Sanchez, M.J., Poulsen, T.D. 2004. Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quantum Chem 100, 1136–1152.

    Article  CAS  Google Scholar 

  142. Truhlar, D.G., Liu, Y.P., Schenter, G.K., Garrett, B.C. 1994. Tunneling in the presence of a bath — a generalized transition-state theory approach. J Phys Chem 98, 8396–8405.

    Article  CAS  Google Scholar 

  143. van der Kamp, M.W., Perruccio, F., Mulholland, A.J. 2007. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase. J Molec Graphics Modell 26, 676–690.

    Article  CAS  Google Scholar 

  144. van der Kamp, M.W., Shaw, K.E., Woods, C.J., Mulholland, A.J. 2008. Biomolecular simulation and modelling: status, progress and prospects. J R Soc Interface 5, S173–S190.

    Article  PubMed  CAS  Google Scholar 

  145. Villa, J., Warshel, A. 2001. Energetics and dynamics of enzymatic reactions. J Phys Chem B 105, 7887–7907.

    Article  CAS  Google Scholar 

  146. Wang, Q., Hammes-Schiffer, S. 2006. Hybrid quantum/ classical path integral approach for simulation of hydrogen transfer reactions in enzymes. J Chem Phys 125, 184102.

    Article  PubMed  CAS  Google Scholar 

  147. Warshel, A. 1998. Electrostatic origin of the catalytic power of enzymes and the role of preorganised active sites. J Biol Chem 273, 27035–27038.

    Article  PubMed  CAS  Google Scholar 

  148. Warshel, A., Villa-Freixa, J. 2003. Comment on “Effect of active site mutation Phe93 -> Trp in the horse liver alcohol dehydrogenase dnzyme on catalysis: A molecular dynamics study”. J Phys Chem B 107, 12370–12371.

    Article  CAS  Google Scholar 

  149. Warshel, A., Weiss, R.M. 1980. An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 102, 6218–6226.

    Article  CAS  Google Scholar 

  150. Weston, C.J., Cureton, C.H., Calvert, M.J., Smart, O.S., Allemann, R.K. 2004. A stable miniature protein with oxaloacetate decarboxylase activity. Chem Bio Chem 5, 1075–1080.

    PubMed  CAS  Google Scholar 

  151. Wigner, E.P. 1932. Über das übershrieten von Potentialschwellen bei Chemischen Reaktionen. Z Phys Chem Abt B 19, 203–216.

    Google Scholar 

  152. Wolfenden, R., Snider, M.J. 2001. The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34, 938–945.

    Article  PubMed  CAS  Google Scholar 

  153. Woodley, J.M. 2008. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26, 321–327.

    Article  PubMed  CAS  Google Scholar 

  154. Wyatt, R.E. 1969. Quantum mechanics of H+H2 reaction — investigation of vibrational adiabatic models. J Chem Phys 51, 3489–3502.

    Article  CAS  Google Scholar 

  155. Zurek, J., Foloppe, N., Harvey, J.N., Mulholland, A.J. 2006. Mechanisms of reaction in cytochrome P450: hydroxylation of camphor in P450cam. Org Biomol Chem 4, 3931–3937.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Mulholland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranaghan, K.E., Mulholland, A.J. Computer simulations of quantum tunnelling in enzyme-catalysed hydrogen transfer reactions. Interdiscip Sci Comput Life Sci 2, 78–97 (2010). https://doi.org/10.1007/s12539-010-0093-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-010-0093-y

Key words

Navigation