Codon populations in single-stranded whole human genome DNA Are fractal and fine-tuned by the Golden Ratio 1.618

An Erratum to this article is available

Abstract

This new bioinformatics research bridges Genomics and Mathematics. We propose a universal “Fractal Genome Code Law”: The frequency of each of the 64 codons across the entire human genome is controlled by the codon’s position in the Universal Genetic Code table. We analyze the frequency of distribution of the 64 codons (codon usage) within single-stranded DNA sequences. Concatenating 24 Human chromosomes, we show that the entire human genome employs the well known universal genetic code table as a macro structural model. The position of each codon within this table precisely dictates its population. So the Universal Genetic Code Table not only maps codons to amino acids, but serves as a global checksum matrix. Frequencies of the 64 codons in the whole human genome scale are a self-similar fractal expansion of the universal genetic code. The original genetic code kernel governs not only the micro scale but the macro scale as well. Particularly, the 6 folding steps of codon populations modeled by the binary divisions of the “Dragon fractal paper folding curve” show evidence of 2 attractors. The numerical relationship between the attractors is derived from the Golden Ratio. We demonstrate that:

  1. (i)

    The whole Human Genome Structure uses the Universal Genetic Code Table as a tuning model. It predetermines global codons proportions and populations. The Universal Genetic Code Table governs both micro and macro behavior of the genome.

  2. (ii)

    We extend the Chargaff’s second rule from the domain of single TCAG nucleotides to the larger domain of codon triplets.

  3. (iii)

    Codon frequencies in the human genome are clustered around 2 fractal-like attractors, strongly linked to the golden ratio 1.618.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Affleck, I. 2010. Solid-state physics: Golden ratio seen in a magnet. Nature 464, 362–363.

    CAS  Article  PubMed  Google Scholar 

  2. [2]

    Albrecht-Buehler, G. 2006. Asymptotically increasing compliance of genomes with Chargaff’s second parity rules through inversions and inverted transpositions. Proc Natl Acad Sci USA 103, 17828–17833.

    CAS  Article  PubMed  Google Scholar 

  3. [3]

    Baltimore, D. 2001. Our genome unveiled. Nature 409, 814–816.

    CAS  Article  PubMed  Google Scholar 

  4. [4]

    Calleman, C.J. 2009. The Purposeful Universe. Bear § Co, Rochester USA, 153.

    Google Scholar 

  5. [5]

    Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Tlling, M., Habicht, K., Smeibidl, P., Kiefer, K. 2010. Quantum criticality in an ising chain: Experimental evidence for emergent E8 symmetry. Science 327, 177–180.

    CAS  Article  PubMed  Google Scholar 

  6. [7]

    Fedoroff, N.V. 1984. Transposable genetic elements in maize. Scientific American 250, 84–98.

    CAS  Article  Google Scholar 

  7. [8]

    Gardner, M. 1967. Mathematical Games. Scientific American 216, 124–125, 118–120, and 217, 115.

    Google Scholar 

  8. [9]

    Lander, E. 2009. Science 326, cover page (Eric Lander (Science Adviser to the President and Director of Broad Institute) et al. delivered the message on Science Magazine cover (Oct. 9, 2009) to the effect: 〈〈Mr. President; The Genome is Fractal!〉〉).

  9. [10]

    Liebermann-Aiden, E., Van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R, Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome Export. Science 326, 289–293.

    Article  Google Scholar 

  10. [11]

    Mandelbrot, B.B. 1983. The Fractal Geometry of Nature. Freeman, New York.

    Google Scholar 

  11. [12]

    Montagnier, L., Aïsssa, J., Lavallée, C., Mbamy, M., Varon, J., Chenal, H. 2009. Electromagnetic detection of HIV DNA in the blood of AIDS patients treated by antiretroviral therapy. Interdisciplinary Sci Comput Life Sci 1, 245–253.

    CAS  Article  Google Scholar 

  12. [13]

    Pellionisz, A. 2008. The principle of recursive genome function. The Cerebellum Springer 7, 348–359.

    CAS  Article  Google Scholar 

  13. [14]

    Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sclortino, F., Simons, M., Stanley, H.E. 1992. Long-range correlations in nucleotide sequences, Nature 356, 168–170.

    CAS  Article  PubMed  Google Scholar 

  14. [15]

    Perez, J.C. 1990. Integers neural network systems (INNS) using resonance properties of a Fibonacci’s chaotic golden neuron. Neural Networks 1, 859–865.

    Google Scholar 

  15. [16]

    Perez, J.C. 1991. Chaos, DNA, and Neuro-computers: A golden link: The hidden language of genes, global language and order in the human genome. Speculations in Science and Technology 14, 336–346.

    CAS  Google Scholar 

  16. [17]

    Perez, J.C. 1994. Method for the functional optimization of high temperature superconductors by controlling the morphological proportions of their thin layers. (PCT/FR93/00782). International Européen PCT (Patent Cooperation Treaty) number WO94/03932.

  17. [18]

    Perez, J.C. 1997. L’ADN décrypté (〈〈DNA Deciphered〉〉), Resurgence, Liège Belgium.

    Google Scholar 

  18. [19]

    Perez, J.C. 2009. Codex Biogenesis. Resurgence, Liège Belgium.

    Google Scholar 

  19. [20]

    Rudner, R., Karkas, J.D., Chargaff, E. 1968. Separation of B. subtilis DNA into complementary strands. III. Direct Analysis. Proc Natl Acad Sci USA 60, 931–922.

    Google Scholar 

  20. [21]

    Yamagishi, M.E.B., Shimabukuro, A.I. 2008. Nucleotides frequencies in human genome and Fibonacci numbers. Bulletin of Mathematical Biology 70, 643–653.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Perez.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12539-010-0051-8

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perez, JC. Codon populations in single-stranded whole human genome DNA Are fractal and fine-tuned by the Golden Ratio 1.618. Interdiscip Sci Comput Life Sci 2, 228–240 (2010). https://doi.org/10.1007/s12539-010-0022-0

Download citation

Key words

  • interdisciplinary
  • bioinformatics
  • mathematics
  • human genome decoding
  • Universal Genetic Code
  • Chargaff’s rules
  • noncoding DNA
  • symmetry
  • chaos theory
  • fractals
  • golden ratio
  • checksum
  • cellular automata
  • DNA strands atomic weights balance