Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences

  • Luc Montagnier
  • Jamal Aïssa
  • Stéphane Ferris
  • Jean-Luc Montagnier
  • Claude Lavalléee
Article

Abstract

A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.

Key words

DNA electromagnetic signals bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Benveniste, J., Jurgens, P., Aïssa, J. 1996. Digital recording/ transmission of the cholinergic signal. Faseb Journal 10, A1479.Google Scholar
  2. [2]
    Benveniste, J., Guillonnet, D. 2003. Method, system and device for producing signals from a substance biological and/or chemical activity. US Patent N° 6 541, 978 B1.Google Scholar
  3. [3]
    Cowan, M.L., Bruner, B.D., Huse, N., Dwyer, J.R., Chugh, B., Nibbering, E.T., Elsaesser, T., Miller, R.J. 2005. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202.CrossRefPubMedGoogle Scholar
  4. [4]
    David, J. 1998. Introduction to Magnetism and Magnetic Materials. CRC Press. 354.Google Scholar
  5. [5]
    Del Guidice, E., Preparata, G., Vitielo, G. 1988. Water as a free electric dipole laser. Physical Review Letters 61, 1085–1088.CrossRefGoogle Scholar
  6. [6]
    Grau, O., Kovacic, R., Griffais, R., Montagnier, L. 1993. Development of a selective and sensitive polymerase chain reaction assay for the detection of Mycoplasma pirum. FEMS Microbiology Letters 106, 327–334.CrossRefPubMedGoogle Scholar
  7. [7]
    Ruan, C.Y., Lobastov, V.A., Vigliotti, F., Chen, S., Zewall, A.H. 2004. Ultrafast electron crystallography of interfacial water. Science 304, 80–84.CrossRefPubMedGoogle Scholar
  8. [8]
    Tham, T.N., Ferris, S., Bahraoui, E., Canarelli, S., Montagnier, L., Blanchard, A. 1994. Molecular characterization of the P1-like adhesin gene from Mycoplasma pirum. Journal of Bacteriology, 781–788.Google Scholar
  9. [9]
    Tully, J.G., Whitcomb, R.G., Clark, H.F., Williamson, D.L. 1977. Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195, 892–894.CrossRefPubMedGoogle Scholar
  10. [10]
    Wernet, P., Nordlund, D., Bergmann, U., Cavalleri, M., Odelius, M., Ogasawara, H., Näslund, L.A., Hirsch, T.K., Ojamäe, L., Glatzel, P., Pettersson, L.G., Nilsson, A. 2004. The structure of the first coordination shell in liquid water. Science 304, 995–999.CrossRefPubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Luc Montagnier
    • 1
    • 2
  • Jamal Aïssa
    • 1
  • Stéphane Ferris
    • 1
  • Jean-Luc Montagnier
    • 1
  • Claude Lavalléee
    • 1
  1. 1.Nanectis BiotechnologiesJouy en JosasFrance
  2. 2.Vironix LLCNew YorkUSA

Personalised recommendations