Skip to main content

Advertisement

Log in

Wirkung einer Nahrungsergänzung auf Basis von Enzym–Hefezellen auf den oxidativen Stress bei klinisch gesunden Personen

  • Studien
  • Published:
Sport- und Präventivmedizin

Rationale

Dietary strategies to sustain antioxidative capacity are often inadequately evaluated. We have tested the influence of a yeast–cells–based supplement on the blood concentration of free radicals.

Methods

11 healthy subjects (5 males, 6 females, 20 to 50 yrs) were examined before and after 4–weeks intervention with a daily 30 ml dosage of a bioactive yeast–cells preparation (Dr. Wolz Zell Immunkomplex®). Free radicals were measured in the morning at a 240 min time interval by electron–spin–spectroscopy (Fa. Bruker, Rheinstetten, Germany).

Results

All participants completed the study without side effects. After intervention free radicals were lowered (p < 0.01) and decreased acutely after drinking the test dosage (1.72 ± 0.19 vs. 2.04 ± 0.37) at about 20% .

Conclusions

The method used objectifies significant adaptations after intake of the bioactive supplement. The intake of the complex induces an adjustment of the antioxidant regulations. This modulation may be of specific interest in health care and complementary therapy of chronic degenerative diseases.

Rationales

Vorgaben, mit denen über Ernährungsansätze auf die Regulation der antioxidativen Kapazität Einfluss genommen werden soll, sind meist nur unzureichend über methodische Verfahren abgesichert. In der vorliegenden Studiewurde der Einfluss eines Nahrungssupplements auf Basis von Hefezellen auf die Blutkonzentration der freien Radikale beobachtet.

Methoden

Hierzu wurden 11 klinisch gesunde Personen (5 Männer und 6 Frauen im Alter von 20 bis 50 Jahren) vor und nach einer 4-wöchigen Intervention mit einem bioaktiven Supplement (morgendlicher Verzehr von 30 ml Dr. Wolz Zell Immunkomplex®) untersucht. Zur Beurteilung der aktuellen oxidativen Stresssituation wurde zu 3 Untersuchungszeitpunkten über einen Zeitraum von 240 Minuten nach Verzehr des Supplements die Blutkonzentration der freien Radikale mittels Elektronen-Spin-Spektroskopie (Fa. Bruker, Rheinstetten, Deutschland) analysiert.

Ergebnisse

Alle Probanden beendeten die Studie ohne Beobachtung von Nebenwirkungen. Nach der Intervention messen sich die freien Radikale zu allen Messzeitpunkten erniedrigt (p < 0.01); mit einer Absenkung um ca. 20% gegenüber dem Basiswert wird für die freien Radikale die niedrigste Blutkonzentration 240 Minuten nach Trinken des Supplements erreicht (1.72 ± 0.19 vs. 2.04 ± 0.37).

Schlussfolgerungen

Mit der benutzten Methode ist es möglich, einen signifikanten Einfluss des getesteten bioaktiven Immunkomplexes auf die Blutkonzentration der freien Radikale nachzuweisen. So führt der Verzehr des Supplements zu einem Absenken der Radikalkonzentration und einer möglichen Anpassung der antioxidativen Regulation. Die nachgewiesene Wirkung kann für die Gesundheitsvorsorge wie auch für eine begleitende Therapie von chronisch degenerativen Erkrankungen von Bedeutung sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Literatur

  1. Beckman KB, Ames BN.: The free radical theory of aging matures. Physiol Rev. 78, 547–581 (1998)

    PubMed  CAS  Google Scholar 

  2. Meydani M. Nutrition interventions in aging and age–associated disease. Ann N Y Acad Sci. 928, 226–35 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Lü JM, Lin PH, Yao Q, Chen C.: Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 14, 840–60 (2010)

    Article  PubMed  Google Scholar 

  4. Soory M.: Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: potential for therapeutic targeting. Infect Disord Drug Targets. 9, 400–14 (2009)

    PubMed  CAS  Google Scholar 

  5. Zadák Z, Hyspler R, Tichá A, Hronek M, Fikrová P, Rathouská J, Hrnciariková D, Stetina R. Antioxidants and vitamins in clinical conditions. Physiol Res. 2009;58 Suppl 1:S13–7

    Google Scholar 

  6. American Dietetic Association; Dietitians of Canada; American College of Sports Medicine, Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. (2009) 41:709–31

    Google Scholar 

  7. Biesalski H–K. (1995) Antioxidative Vitamine in der Prävention Deutsches Ärzteblatt 92 A, 1316–1321

  8. Deibert P, König D, Berg A.: Ernährungsempfehlungen für Sporttreibende – Gesundheitsvorteile auch für die Gesamtbevölkerung? J Ernährungsmed.7, 14–21 (2005)

    Google Scholar 

  9. Berg A., König D.: Brauchen Sportler AOV–Supplemente?. Schweiz Z Ernährungsmedizin 4, 26–30 (2010)

    Google Scholar 

  10. Mastaloudis A, Morrow JD, Hopkins DW, Devaraj S, Traber MG.: Antioxidant supplementation prevents exercise–induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med. 36, 1329–41 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. Mettler S, Mannhart C, Colombani PC.: Development and validation of a food pyramid for Swiss athletes. Int J Sport Nutr Exerc Metab. 19, 504–18 (2009)

    PubMed  Google Scholar 

  12. Sen CK.: Antioxidants in exercise nutrition. Sports Med. 31, 891–908 (2001)

    Article  PubMed  CAS  Google Scholar 

  13. Beitz R, Mensink GB, Fischer B, Thamm M.: Vitamins–dietary intake and intake from dietary supplements in Germany. Eur J Clin Nutr. 56, 539–45 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. Flynn A, Moreiras O, Stehle P, Fletcher RJ, Müller DJ, Rolland V.: Vitamins and minerals: a model for safe addition to foods. Eur J Nutr. 42, 118–30 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C.: Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta–analysis. JAMA. 297, 842–57 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E.: Effects of beta–glucans on the immune system. Medicina (Kaunas). 43, 597–606 (2007)

    PubMed  Google Scholar 

  17. Babu PV, Liu D.: Green tea catechins and cardiovascular health: an update. Curr Med Chem. 15, 1840–50 (2008)

    Article  PubMed  CAS  Google Scholar 

  18. Stoner GD, Wang LS, Casto BC.: Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis. 29, 1665–74 (2008)

    Article  PubMed  CAS  Google Scholar 

  19. Sun AY, Wang Q, Simonyi A, Sun GY.: Botanical phenolics and brain health. Neuromolecular Med. 10, 259–74 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Chan GC, Chan WK, Sze DM.: The effects of beta–glucan on human immune and cancer cells. J Hematol Oncol. 2, 25 (2009)

    Article  PubMed  Google Scholar 

  21. Kim SY, Song HJ, Lee YY, Cho KH, Roh YK.: Biomedical issues of dietary fiber beta–glucan. J Korean Med Sci. 21, 781–9 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. Williams DL.: Overview of (1–>3)–beta–D–glucan immunobiology. Mediators Inflamm. 6, 247–50 (1997)

    Article  PubMed  CAS  Google Scholar 

  23. Berg A, König D, Halle M, Grathwohl D, Berg A, Weinstock C, Northoff H, Keul J.: Wirkung eines biologischen Kombinationspräparates auf Enzym–Hefezellbasis auf Muskelstress und Immunsystem. Dtsch Z Sportmed 48, 433–441 (1997)

    Google Scholar 

  24. König D, Keul J, Northoff H, Halle M, Berg A.: Einfluß einer 6–wöchigen Intervention mit enzymaktiven Hefezellen und Antioxidantien auf Belastungsstreß und Antioxidantienstatus. Wien med Wschr 149, 13–18 (1999)

    PubMed  Google Scholar 

  25. Gorgos R, Wolz G.: Beta–Glukane und Immunsystem. Erfahrungsheilkunde. 54, 638–643 (2005)

    Article  CAS  Google Scholar 

  26. Atalay M, Lappalainen J, Sen CK.: Dietary antioxidants for the athlete. Curr Sports Med Rep. 5, 182–6 (2006)

    Google Scholar 

  27. Powers SK, Smuder AJ, Kavazis AN, Hudson MB.: Experimental guidelines for studies designed to investigate the impact of antioxidant supplementation on exercise performance. Int J Sport Nutr Exerc Metab. 20, 2–14 (2010)

    PubMed  CAS  Google Scholar 

  28. Kopáni M, Celec P, Danisovic L, Michalka P, Biró C.: Oxidative stress and electron spin resonance. Clin Chim Acta. 364, 61–6 (2006)

    Article  PubMed  Google Scholar 

  29. Urso ML, Clarkson PM.: Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 189, 41–54 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Deibert P, König D, Schaffner D, Stensitzky–Thielemans A, Fink B, Berg A. Effects of a yeast–cells–based dietary supplement on immune reaction and oxidative stress in clinically healthy subjects. Posterpräsentation, 7.Jahrestagung DGKL, Mannheim 2010. Clin Chem Lab Med. 2010;49:A103–104 (abstract).

  31. Dartsch P. Health benefits of two enzyme yeast cell–based dietary supplements. Innovations in Food Technology 2010; Heft 11:48–51

    Google Scholar 

  32. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I, Berhe N, Willett WC, Phillips KM, Jacobs DR Jr, Blomhoff R. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3.

    Google Scholar 

  33. Lesage G, Bussey H.: Cell wall assembly in Saccharomyces cerevisiae.. icrobiol Mol Biol Rev. 70, 317–43 (2006)

    Article  CAS  Google Scholar 

  34. Brambilla D, Mancuso C, Scuderi MR, Bosco P, Cantarella G, Lempereur L, Di Benedetto G, Pezzino S, Bernardini R.: The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J. 7, 29 (2008)

    Article  PubMed  Google Scholar 

  35. Bloomer RJ, Goldfarb AH, McKenzie MJ.: Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc. 38, 1098–105 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. Navarro A, Gomez C, López–Cepero JM, Boveris A. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol. 2004;286:R505–11.

    Google Scholar 

  37. Bloomer RJ, Fisher–Wellman KH.: Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gend Med. 5, 218–28 (2008)

    Article  PubMed  Google Scholar 

  38. Carlsohn A, Rohn S, Bittmann F, Raila J, Mayer F, Schweigert FJ.: Exercise increases the plasma antioxidant capacity of adolescent athletes. Ann Nutr Metab. 53, 96–103 (2008)

    Article  PubMed  CAS  Google Scholar 

  39. Kostaropoulos IA, Nikolaidis MG, Jamurtas AZ, Ikonomou GV, Makrygiannis V, Papadopoulos G, Kouretas D.: Comparison of the blood redox status between long–distance and short–distance runners. Physiol Res. 55, 611–6 (2006)

    PubMed  CAS  Google Scholar 

  40. Gomez–Cabrera MC, Domenech E, Viña J.: Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 44, 126–31 (2008a)

    Article  Google Scholar 

  41. Gomez–Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Viña J.: Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers traininginduced adaptations in endurance performance. Am J Clin Nutr. 87, 142–9 (2008b)

    Google Scholar 

  42. Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S.: Role of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 21, 1681–8 (2001)

    Article  PubMed  CAS  Google Scholar 

  43. Bolcal C, Yildirim V, Doganci S, Sargin M, Aydin A, Kuralay E, Ozal E, Demirkilic U, Oz BS, Sayal A, Tatar H. Do N–acetylcystein, betaglucan, and coenzyme Q10 mollify myocardial ischemia–reperfusion injury? Heart Surg Forum. 2007;10:E222–7.

    Google Scholar 

  44. Gu Y, Fujimiya Y, Itokawa Y, Oshima M, Choi JS, Miura T, Ishida T.: Tumoricidal effects of beta–glucans: mechanisms include both antioxidant activity plus enhanced systemic and topical immunity. Nutr Cancer. 60, 685–91 (2008)

    Article  PubMed  Google Scholar 

  45. Kim YS, Ke F, Zhang QY. Effect of beta–glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish Shellfish Immunol. 2009 Aug;27:336–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Effect of a dietary supplement based on enzyme yeast cells to oxidative stress in clinically healthy individuals

Eingegangen am 28.03.2011, angenommen am 16.05.2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deibert, P., König, D., Schaffner, D. et al. Wirkung einer Nahrungsergänzung auf Basis von Enzym–Hefezellen auf den oxidativen Stress bei klinisch gesunden Personen. Sportmed Präventivmed 41, 17–23 (2011). https://doi.org/10.1007/s12534-011-178-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12534-011-178-3

Keywords

Schlüsselwörter

Navigation