Skip to main content

Convex quadratic relaxations for mixed-integer nonlinear programs in power systems

Abstract

This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semidefinite programming relaxations. Three case studies in optimal power flow, optimal transmission switching and capacitor placement demonstrate the benefits of the new relaxations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

N :

The set of nodes in a network

E :

The set of edges in a network

pq :

Line active and reactive power flow

\(v, \theta \) :

Voltage magnitude and angle

\(p^g, q^g\) :

Generator active and reactive power output

\(\varvec{p}^d, \varvec{q}^d\) :

Load active and reactive power demand

\(\varvec{r}, \varvec{x}\) :

Line resistance and reactance

\(\varvec{g}, \varvec{b}\) :

Line conductance and susceptance

\(\varvec{t}, \varvec{\theta }^u\) :

Line thermal and angle difference limits

\(\varvec{c}_0, \varvec{c}_1, \varvec{c}_2\) :

Generation cost coefficients

\(\varvec{\theta }^M\) :

Big-M value for line angle differences

\(x^u\) :

Upper bound of x

\(x^l\) :

Lower bound of x

:

Convex relaxation of x

\(\varvec{x}\) :

A constant value

References

  1. 1.

    Borghetti, A., Paolone, M., C.A.N.: A mixed integer linear programming approach to the optimal configuration of electrical distribution networks with embedded generators. In: Proceedings of the 17th Power Systems Computation Conference (PSCC’11), Stockholm, Sweden (2011)

  2. 2.

    Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009). doi:10.1007/s12532-008-0001-1

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Aguiar, R., Cuervo, P.: Capacitor placement in radial distribution networks through a linear deterministic optimization model. In: Proceedings of the 15th Power Systems Computation Conference (PSCC’05), Liege, Belgium (2005)

  4. 4.

    Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. Int. J. Electr. Power Energy Syst. 30(6–7), 383–392 (2008). doi:10.1016/j.ijepes.2007.12.003

    Article  Google Scholar 

  6. 6.

    Baran, M., Wu, F.: Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 4(1), 725–734 (1989). doi:10.1109/61.19265

    Article  Google Scholar 

  7. 7.

    Belotti, P.: Couenne: User manual. Published online at https://projects.coin-or.org/Couenne/ (2009). Accessed 10 April 2015

  8. 8.

    Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout problems. Discret. Optim. 4(1), 115–141 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bienstock, D., Verma, A.: The n-k problem in power grids: new models, formulations, and numerical experiments. SIAM J. Optim. 20(5), 2352–2380 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Bonami, P., Biegler, L.T., Conn, A.R., Cornuejols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Carpentier, M.J.: Contribution a letude du dispatching economique. Bulletin Society Francaise Electriciens (1962)

  12. 12.

    Castillo, A., O’Neill, R.P.: Computational performance of solution techniques applied to the acopf. Published online at http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-5-computational-testing.pdf (2013). Accessed 17 Dec 2014

  13. 13.

    Coffrin, C., Gordon, D., Scott, P.: NESTA, The Nicta Energy System Test Case Archive (2014). arXiv:1411.0359

  14. 14.

    Coffrin, C., Hijazi, H., Van Hentenryck, P.: DistFlow Extensions for AC Transmission Systems (2015) arXiv:1506.04773

  15. 15.

    Coffrin, C., Van Hentenryck, P.: A linear-programming approximation of ac power flows. INFORMS J Comput 26(4), 718–734 (2014). doi:10.1287/ijoc.2014.0594

    Article  MATH  Google Scholar 

  16. 16.

    Coffrin, C., Van Hentenryck, P., Bent, R.: Strategic stockpiling of power system supplies for disaster recovery. In: Proceedings of the 2011 IEEE Power and Energy Society General Meetings (PES) (2011)

  17. 17.

    Delfanti, M., Granelli, G., Marannino, P., Montagna, M.: Optimal capacitor placement using deterministic and genetic algorithms. IEEE Trans. Power Syst. 15(3), 1041–1046 (2000)

    Article  Google Scholar 

  18. 18.

    Farivar, M., Clarke, C., Low, S., Chandy, K.: Inverter var control for distribution systems with renewables. In: 2011 IEEE international conference on smart grid communications (SmartGridComm), pp. 457–462 (2011). doi:10.1109/SmartGridComm.2011.6102366

  19. 19.

    Fisher, E., O’Neill, R., Ferris, M.: Optimal transmission switching. IEEE Trans. Power Syst. 23(3), 1346–1355 (2008). doi:10.1109/TPWRS.2008.922256

    Article  Google Scholar 

  20. 20.

    Fourer, R., Gay, D.M., Kernighan, B.: AMPL: a mathematical programming language. In: Wallace, S.W. (ed.) Algorithms and Model Formulations in Mathematical Programming, pp. 150–151. Springer, New York (1989)

    Chapter  Google Scholar 

  21. 21.

    Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124(1–2), 183–205 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Gurobi Optimization, Inc.: Gurobi optimizer reference manual. Published online at http://www.gurobi.com (2014)

  23. 23.

    Hedman, K., O’Neill, R., Fisher, E., Oren, S.: Optimal transmission switching with contingency analysis. IEEE Trans. Power Syst. 24(3), 1577–1586 (2009)

    Article  Google Scholar 

  24. 24.

    Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear programs featuring “on/off” constraints. Comput. Optim. Appl. 52(2), 537–558 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Hijazi, H.L., Bonami, P., Ouorou, A.: A note on linear on/off constraints. Australian National University technical report (2014)

  26. 26.

    Huang, Y.C., Yang, H.T., Huang, C.L.: Solving the capacitor placement problem in a radial distribution system using tabu search approach. IEEE Trans. Power Syst. 11(4), 1868–1873 (1996)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Jabr, R.: Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3), 1458–1459 (2006)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Khodaei, A., Shahidehpour, M.: Transmission switching in security-constrained unit commitment. IEEE Trans. Power Syst. 25(4), 1937–1945 (2010)

    Article  Google Scholar 

  29. 29.

    Knight, U.G.: Power Systems Engineering and Mathematics, by U.G. Knight. Pergamon Press, Oxford (1972)

    Google Scholar 

  30. 30.

    Lavaei, J.: OPF solver. Published online at http://ieor.berkeley.edu/~lavaei/Software.html (2014). Accessed 09 May 2016

  31. 31.

    Lavaei, J., Low, S.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012). doi:10.1109/TPWRS.2011.2160974

    Article  Google Scholar 

  32. 32.

    Lee, K., Yang, F.: Optimal reactive power planning using evolutionary algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Trans. Power Syst. 13(1), 101–108 (1998)

    Article  Google Scholar 

  33. 33.

    Liberti, L.: Reduction constraints for the global optimization of NLPs. Int Trans Oper Res 11(1), 33–41 (2004). http://dx.doi.org/10.1111/j.1475-3995.2004.00438.x

  34. 34.

    Lofberg, J.: Yalmip : a toolbox for modeling and optimization in matlab. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284 –289 (2004)

  35. 35.

    Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem. IEEE Trans. Power Syst. (2015). doi:10.1109/TPWRS.2015.2411391

  36. 36.

    Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flow problem: mesh networks. IEEE Trans. Power Syst. 30(1), 199–211 (2015). doi:10.1109/TPWRS.2014.2322051

    Article  Google Scholar 

  37. 37.

    McCormick, G.: Computability of global solutions to factorable nonconvex programs: part i—convex underestimating problems. Math. Program. 10, 146–175 (1976)

    Article  MATH  Google Scholar 

  38. 38.

    Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Springer, Boston (2004). doi:10.1007/978-1-4613-0251-3_18

  39. 39.

    Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J Glob. Optim. 29(2), 125–155 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Mittelmann, H.: Benchmarks for optimization software. http://plato.asu.edu/bench.html (2012). Accessed Feb 2014

  41. 41.

    Momoh, J., Adapa, R., El-Hawary, M.: A review of selected optimal power flow literature to 1993. I. nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14(1), 96–104 (1999). doi:10.1109/59.744492

    Article  Google Scholar 

  42. 42.

    Momoh, J., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999). doi:10.1109/59.744495

    Article  Google Scholar 

  43. 43.

    Momoh, J.A.: Electric Power System Applications of Optimization (Power Engineering (Willis)). CRC Press, Boca Raton (2001)

    Google Scholar 

  44. 44.

    Munoz, J.R.A.: Analysis and application of optimization techniques to power system security and electricity markets. Ph.D. thesis, University of Waterloo (2008)

  45. 45.

    Ott, A.: Unit commitment in the pjm day-ahead and real-time markets. Published online at http://www.ferc.gov/eventcalendar/Files/20100601131610-Ott (2010). Accessed 22 April 2012

  46. 46.

    Overbye, T., Cheng, X., Sun, Y.: A comparison of the AC and DC power flow models for LMP calculations. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, p. 9 (2004)

  47. 47.

    Phan, D.T.: Lagrangian duality and branch-and-bound algorithms for optimal power flow. Oper. Res. 60(2), 275–285 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  48. 48.

    Purchala, K., Meeus, L., Van Dommelen, D., Belmans, R.: Usefulness of DC power flow for active power flow analysis. Power Engineering Society General Meeting pp. 454–459 (2005)

  49. 49.

    Ruiz, J.P., Grossmann, I.E.: Using redundancy to strengthen the relaxation for the global optimization of MINLP problems. Comput. Chem. Eng. 35(12), 2729–2740 (2011)

    Article  Google Scholar 

  50. 50.

    Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19(2), 905–912 (2004)

    Article  Google Scholar 

  51. 51.

    Salmeron, J., Wood, K., Baldick, R.: Worst-case interdiction analysis of large-scale electric power grids. IEEE Trans. Power Syst. 24(1), 96–104 (2009)

    Article  Google Scholar 

  52. 52.

    Sojoudi, S., Lavaei, J.: Physics of power networks makes hard optimization problems easy to solve. In: Power and Energy Society General Meeting, 2012 IEEE, pp. 1–8 (2012).doi:10.1109/PESGM.2012.6345272

  53. 53.

    Stott, B., Jardim, J., Alsac, O.: DC power flow revisited. IEEE Trans. Power Syst. 24(3), 1290–1300 (2009). doi:10.1109/TPWRS.2009.2021235

    Article  Google Scholar 

  54. 54.

    Taylor, J., Hover, F.: Linear relaxations for transmission system planning. IEEE Trans. Power Syst. 26(4), 2533–2538 (2011). doi:10.1109/TPWRS.2011.2145395

    Article  Google Scholar 

  55. 55.

    Taylor, J., Hover, F.: Convex models of distribution system reconfiguration. IEEE Trans. Power Syst. 27(3), 1407–1413 (2012). doi:10.1109/TPWRS.2012.2184307

    Article  Google Scholar 

  56. 56.

    Toh, K.C., Todd, M., Tutuncu, R.H.: Sdpt3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  57. 57.

    U.K., R.C.: The HSL mathematical software library. Published online at http://www.hsl.rl.ac.uk/. Accessed 30 Oct 2014

  58. 58.

    Van Hentenryck, P., Coffrin, C., Bent, R.: Vehicle routing for the last mile of power system restoration. In: Proceedings of the 17th Power Systems Computation Conference (PSCC’11), Stockholm, Sweden (2011)

  59. 59.

    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  60. 60.

    Wang, X., McDonald, J.: Modern Power System Planning. Mcgraw-Hill (Tx), Maidenheach (1994)

  61. 61.

    Zhuding, W., Du, P., Qishan, F., Haijun, L., David, C.Y.: A non-incremental model for optimal control of reactive power flow. Electr. Power Syst. Res. 39(2), 153–159 (1996)

    Article  Google Scholar 

  62. 62.

    Zimmerman, R., Murillo-Sandnchez, C., Thomas, R.: Matpower: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011). doi:10.1109/TPWRS.2010.2051168

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Daniel K. Molzahn and Bernard C. Lesieutre for graciously providing a prerelease of their SDP based OPF solver, which was used in a earlier version of this manuscript. This work was conducted at NICTA and is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pascal Van Hentenryck.

Appendices

Appendix A: The QC formulations

This appendix describes a variety of extensions to the QC relaxation to key decision problems in power systems, including those featuring discrete variables.

A.1 Optimal power flow

The OPF problem is a simple extension of the QC relaxation. It only requires integration of the operational constraints and an appropriate objective function as follows,

$$\begin{aligned} \min ~&(11) \\ \text {s.t. }&(3)-(4), (5)-(9), \\&(12)-(19), (21), (23) \end{aligned}$$
(QC-OPF)

A.2 Optimal transmission switching (OTS)

Before developing the QC-OTS formulations we first develop an on/off version of the McCormick envelopes from [37] to support the model. The on/off extension of the McCormick envelopes is given by the following disjunction:

$$\begin{aligned} \varGamma ^0_m= & {} \left\{ (w,x,y,z) \in {\mathbb {R}}^{4}: w=0,~ x=0,~ y=0,~ z=0 \right\} \\ \varGamma ^1_m= & {} \left\{ \begin{array}{ll} &{}\left( w,x,y,z\right) \in {\mathbb {R}}^{4}:\\ &{}w \ge {\varvec{x}^l}y + {\varvec{y}^l}x - {\varvec{x}^l}{\varvec{y}^l}\\ &{}w \ge {\varvec{x}^u}y + {\varvec{y}^u}x - {\varvec{x}^u}{\varvec{y}^u}\\ &{}w \le {\varvec{x}^l}y + {\varvec{y}^u}x - {\varvec{x}^l}{\varvec{y}^u}\\ &{}w \le {\varvec{x}^u}y + {\varvec{y}^l}x - {\varvec{x}^u}{\varvec{y}^l} \\ &{} z = 1 \end{array}\right\} \end{aligned}$$

Based on (24) the convex-hull formulation is given by:

$$\begin{aligned} \varGamma ^{*}_m =&\left\{ \begin{array}{ll} &{}\left( w,x,y,z\right) \in {\mathbb {R}}^{4}:\\ &{}w \ge {\varvec{x}^l}y + {\varvec{y}^l}x - z{\varvec{x}^l}{\varvec{y}^l}\\ &{}w \ge {\varvec{x}^u}y + {\varvec{y}^u}x - z{\varvec{x}^u}{\varvec{y}^u}\\ &{}w \le {\varvec{x}^l}y + {\varvec{y}^u}x - z{\varvec{x}^l}{\varvec{y}^u}\\ &{}w \le {\varvec{x}^u}y + {\varvec{y}^l}x - z{\varvec{x}^u}{\varvec{y}^l} \\ &{}z \varvec{w}^l \le w \le z \varvec{w}^u, \\ &{} z \varvec{x}^l \le x \le x \varvec{x}^u, \\ &{} z \varvec{y}^l \le y \le z \varvec{y}^u\\ &{}0 \le z \le 1 \end{array}\right\} \end{aligned}$$
(35)

We will use the notation \(\langle xy,z \rangle ^{M01}\) as the on/off extension of the McCormick relaxation \(\langle xy \rangle ^{M}\).

A.2.1 The QC-OTS formulations

In the OTS problem, discrete variables \(z_{ij} \in \{0,1\}\) for \((i,j) \in E\) are used to remove lines from the network. Let \(\varvec{\theta }^M\) be the largest possible phase angle difference between two disconnected buses, then a natural big-M extension of the (4.2) relaxation is as follows,

While a stronger formulation can be developed using the results from Sect. 5,

See Sect. 6.2 for an in depth study of these OTS relaxations.

A.3 Capacitor placement

All of the variable and network parameters of this model are defined in Sect. 6.3 and used in the (AC-CAP) formulation. The following model is a straight-forward relaxation of the CAP model using the QC constraints,

$$\begin{aligned} \min ~&\sum \limits _{i \in N} c_i + d_i \\ \text {s.t. }&(3), (6)-(9), \\&(12)-(19), (21), (23)\\&{ \varvec{v}^l} \le v_i \le {\varvec{v}^u}\quad \forall i \in N \\&q^c_i - q^d_i + q^g_i - {\varvec{q}^d_i} = \sum \limits _{(i,j) \in E} q_{ij} + \sum \limits _{(j,i) \in E} q_{ij}\quad \forall i \in N, \\&0 \le q^c_{i} \le c_i{ \varvec{q}^{cu}}\quad \forall i \in N,\\&0 \le q^d_{i} \le d_i{ \varvec{q}^{du}}\quad \forall i \in N,\\&c_i \in {\mathbb {Z}}\quad \forall i \in N, \\&d_i \in {\mathbb {Z}}\quad \forall i \in N.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \hbox {(QC-CAP)} \end{aligned}$$

See Sect. 6.3 for an in depth experimental study of this CAP relaxation.

Appendix B: The SOCP and SDP power flow relaxations

In this section we review the formulations of two state-of-the-art power flow relaxations, the SOCP [27] and SDP [5] relaxations, which are used as points of comparison for this work. See Sect. 6.1 for a detailed study of these relaxations on the OPF problem.

SOCP. The SOCP relaxation is inspired by the following equivalence,

$$\begin{aligned} v_{i}^2 v_{j}^2 = (v_i v_j \cos (\theta _i - \theta _j))^2 + (v_i v_j \sin (\theta _i - \theta _j))^2 ~\forall (i,j) \in E. \end{aligned}$$
(36)

The validity of this equivalence is easily verified using the trigonometric identity \(\cos (x)^2 + \sin (x)^2 = 1\). The SOCP relaxation introduces the following W-space variables to replace the non-linear expressions,

In this lifted space, the valid equality (36) becomes,

(37)

And if relaxed to an inequality yields the following SOC constraint,

(38)

The SOCP relaxation is then given by lifting all of the power flow equations into the W-space and adding the valid SOC constraint as follows,

$$\begin{aligned} {\text {SOCP-core}} \equiv \left\{ \begin{array}{l} (3)-(4) \\ (12)-(13)\\ (38) \end{array}\right. \end{aligned}$$

Extending this formulation to the OPF problem requires the following two insights on modeling the operational constraints in the W-space,

(39)
(40)

The equivalence of the first constraint is clear. For a derivation of the second constraint see [36]. Combining these derivations, a complete SOCP-based OPF formulation is given by,

$$\begin{aligned} \min ~&(11) \\ \text {s.t. }&(3)-(4), (12)-(13), (38) \\&(6)-(8), (39)-(40) \end{aligned}$$
(SOCP-OPF)

SDP. Similar to the SOCP relaxation, the SDP relaxation begins by lifting the power flow problem into the W-space as specified above. It then defines the following matrix of complex numbers for \(1..n \in N\),

The key insight of the SDP relaxation is that W is positive-semidefinite, that is,

$$\begin{aligned} W \succeq 0. \end{aligned}$$
(41)

A derivation of this property can be found in [5, 52]. The core of the SDP relaxation is then given by,

$$\begin{aligned} {\text {SDP-core}} \equiv \left\{ \begin{array}{l} (3)-(4) \\ (12)-(13) \\ (41) \end{array}\right. \end{aligned}$$

Utilizing the operational constraints in the W-space, a complete SDP-based OPF formulation is given by,

$$\begin{aligned} \min ~&(11) \\ \text {s.t. }&(3)-(4), (12)-(13), (41) \\&(6)-(8), (39)-(40) \end{aligned}$$
(SDP-OPF)

A key limitation of the SDP relaxation is scalability. This is due to the current state-of-the-art in SDP solvers as well as the number of variables required by this formulation. Observe that the matrix W requires \(|N|^2\) new variables while the W-space from the SOCP relaxation only requires |E| variables. The sparsity of realistic power networks ensures that the number of variables needed in the SOCP relaxation is significantly less than the SDP relaxation. To increase the performance and scalability of the SDP relaxation [35] introduces a method where not all of the \(|N|^2\) variables are required. In this work we utilize this state-of-the-art SDP formulation.

Appendix C: Extensions for AC transmission system datasets

Typical power network datasets, such as those distributed with Matpower [62] include the following additional operational parameters: (1) multiple generators connected to the same bus; (2) multiple lines between buses; (3) bus shunts; (4) voltage transformers; and (5) line charging. In the rest of this section we review how the models in this paper can be extended to incorporate these parameters.

Power Flow Extensions. Let L be the set of lines in the network and let A be the set of triples (ijk) where \(k \in L\) is a unique identifier for each line in the network and \(i,j \in N\) define the two buses connected by this line. Note that the set L enables multiple lines to be connected between two buses. Let \(\varvec{b}^c_{k}\) be the line charging value for each line \(k \in L\). Let \(\varvec{tr}_k, \varvec{\theta }^s_k\) be the tap ratio and phase shifting transformer constants for each line \(k \in L\). While these values are typically given in polar coordinates, we transform them into rectangular coordinates as follows,

$$\begin{aligned} \varvec{t}^R_k&= \varvec{tr}_k \cos (\varvec{\theta }^s_k) \\ \varvec{t}^I_k&= \varvec{tr}_k \sin (\varvec{\theta }^s_k) \end{aligned}$$

Combining these values with the line admittance parameters \(\varvec{g}_k, \varvec{b}_k\), we define the following constants for each line \(k \in L\),

$$\begin{aligned} \varvec{\gamma }_{1k}&= \varvec{b}_k + \varvec{b}^c_{k}/2 \\ \varvec{\gamma }_{2k}&= -\varvec{g}_k \varvec{t}^R_k + \varvec{b}_k \varvec{t}^I_k \\ \varvec{\gamma }_{3k}&= -\varvec{b}_k \varvec{t}^R_k - \varvec{g}_k \varvec{t}^I_k \\ \varvec{\gamma }_{4k}&= -\varvec{g}_k \varvec{t}^R_k - \varvec{b}_k \varvec{t}^I_k \\ \varvec{\gamma }_{5k}&= -\varvec{b}_k \varvec{t}^R_k + \varvec{g}_k \varvec{t}^I_k \end{aligned}$$

The power flow equations are then extended as follows,

$$\begin{aligned} (1)&\Rightarrow p_{ijk} = \frac{\varvec{g}_k}{\varvec{tr}_k^2} v_i^{2} + \frac{\varvec{\gamma }_{2k}}{\varvec{tr}_k^2}v_iv_j \cos (\theta _i - \theta _j) + \frac{\varvec{\gamma }_{3k}}{\varvec{tr}_k^2}v_iv_j\sin (\theta _i - \theta _j) \quad \forall (i,j,k) \in A \end{aligned}$$
(42)
$$\begin{aligned} (1)&\Rightarrow p_{jik} = {\varvec{g}_k} v_i^{2} + \frac{\varvec{\gamma }_{4k}}{\varvec{tr}_k^2}v_jv_i \cos (\theta _j - \theta _i) + \frac{\varvec{\gamma }_{5k}}{\varvec{tr}_k^2}v_jv_i\sin (\theta _j - \theta _i) \quad \forall (i,j,k) \in A \end{aligned}$$
(43)
$$\begin{aligned} (2)&\Rightarrow q_{ijk} = \frac{-\varvec{\gamma }_{1k}}{\varvec{tr}_k^2} v_i^{2} - \frac{\varvec{\gamma }_{3k}}{\varvec{tr}_k^2}v_iv_j \cos (\theta _i - \theta _j) + \frac{\varvec{\gamma }_{2k}}{\varvec{tr}_k^2}v_iv_j\sin (\theta _i - \theta _j) ~\forall (i,j,k) \in A \end{aligned}$$
(44)
$$\begin{aligned} (2)&\Rightarrow q_{jik} \!=\! -\varvec{\gamma }_{1k} v_i^{2} \!-\! \frac{\varvec{\gamma }_{5k}}{\varvec{tr}_k^2}v_jv_i \cos (\theta _j - \theta _i) + \frac{\varvec{\gamma }_{4k}}{\varvec{tr}_k^2}v_jv_i\sin (\theta _j - \theta _i) \quad \forall (i,j,k) \in A \end{aligned}$$
(45)

Observe that transformer parameters make the constants in these equations asymmetrical, a key difference to the simplified power flow Eqs. (1), (2).

Kirchhoff’s current law extensions. Let \(G_i\) be the set of generators at bus \(i \in N\) and let \(\varvec{g}^s_i, \varvec{b}^s_i\) be the active and reactive bus shunt values at that bus. Then the Kirchhoff’s Current Law constraints are extended as follows,

$$\begin{aligned} (3)&\Rightarrow \sum _{j \in G_i} p^g_{j} - \varvec{g}^s_i v_i^2 - {\varvec{p}^d_i} = \sum \limits _{(i,j,k) \in A} p_{ijk} + \sum \limits _{(j,i,k) \in A} p_{ijk} \;\; i \in N \end{aligned}$$
(46)
$$\begin{aligned} (4)&\Rightarrow \sum _{j \in G_i} q^g_{j} + \varvec{b}^s_i v_i^2 - {\varvec{q}^d_i} = \sum \limits _{(i,j,k) \in A} q_{ijk} + \sum \limits _{(j,i,k) \in A} q_{ijk} \;\; i \in N \end{aligned}$$
(47)

Extended optimal power flow. Combining these extensions, the extended optimal power flow problem is given by the following set of constraints,

$$\begin{aligned} \min ~&(11) \\ \text {s.t. }&(42)-(47) \\&(5)-(9) \end{aligned}$$
(AC-OPF-E)

Relaxation extensions. Observe that all of these model extensions result in simple modifications to the constants in front of the following key terms,

$$\begin{aligned} v_i^2,~ v_iv_j \cos (\theta _i - \theta _j),~ v_iv_j \sin (\theta _i - \theta _j). \end{aligned}$$

Because these terms remain unchanged by the extensions, nearly all of the constraints in the relaxations presented here can be adapted to these extensions simply by modifying various constant terms.

A notable exception is the current magnitude constraints (21)–(23) used in the QC model. Let \(A' \subseteq A\) contain one line for each pair of buses connected in A, then these two constraints are updated as follows \(\forall (i,j,k) \in A'\),

(48)
(49)

A derivation of these constraints can be found in [14].

Appendix D: Extended results

This appendix presents comprehensive results on all of the test cases in NESTA v0.6.0 [13]. In addition to the three categories of cases presented previously (i.e. TYP, API, and SAD), this section includes cases from the radial topologies (RAD), and nonconvex optimization (NCO) categories.

In the following result tables these annotations are used:

ud.:

—undefined value

bold :

—a relaxation provided a feasible AC power flow

na.:

—the solver does not support all of the features of this test case

—:

—no solution available at solver termination

inf.:

—the solver proved the model is infeasible

err.:

—the solver had an internal error

oom.:

—the solver ran out of memory

tl.:

—the solver reached the time limit

\(\dagger \) :

—an annotation that the solver reached an internal iteration limit

\(\star \) :

—an annotation that the solver reported numerical accuracy warnings

D.1 Optimal power flow

See Tables 5, 6, 7, 8, 9, 10.

Table 5 Optimality gap for different relaxations of the OPF problem
Table 6 Optimality gap for different relaxations of the OPF problem
Table 7 Optimality gap for different relaxations of the OPF problem
Table 8 Runtimes for different relaxations of the OPF problem
Table 9 Runtimes for different relaxations of the OPF problem
Table 10 Runtimes for different relaxations of the OPF problem

D.2 Optimal transmission switching

See Tables 11, 12.

Table 11 Quality and runtime results of the QC vs QC-strong models on OTS
Table 12 Quality and runtime results of the QC vs QC-strong models on OTS

D.3 Capacitor placement

See Tables 13, 14.

Table 13 Quality and runtime results of the QC relaxation on CAP
Table 14 Quality and runtime results of the QC relaxation on CAP

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hijazi, H., Coffrin, C. & Hentenryck, P.V. Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math. Prog. Comp. 9, 321–367 (2017). https://doi.org/10.1007/s12532-016-0112-z

Download citation

Keywords

  • Mixed-integer nonlinear programming
  • Global optimization
  • Convex relaxation
  • Optimal power flow
  • Optimal transmission switching
  • Capacitor placement

Mathematics Subject Classification

  • 90C11
  • 90C26
  • 90C25
  • 90C30
  • 90C90