Mathematical Programming Computation

, Volume 8, Issue 3, pp 337–375 | Cite as

RLT-POS: Reformulation-Linearization Technique-based optimization software for solving polynomial programming problems

  • Evrim DalkiranEmail author
  • Hanif D. Sherali
Full Length Paper


In this paper, we introduce a Reformulation-Linearization Technique-based open-source optimization software for solving polynomial programming problems (RLT-POS). We present algorithms and mechanisms that form the backbone of RLT-POS, including constraint filtering techniques, reduced RLT representations, and semidefinite cuts. When implemented individually, each model enhancement has been shown in previous papers to significantly improve the performance of the standard RLT procedure. However, the coordination between different model enhancement techniques becomes critical for an improved overall performance since special structures in the original formulation that work in favor of a particular technique might be lost after implementing some other model enhancement. More specifically, we discuss the coordination between (1) constraint elimination via filtering techniques and reduced RLT representations, and (2) semidefinite cuts for sparse problems. We present computational results using instances from the literature as well as randomly generated problems to demonstrate the improvement over a standard RLT implementation and to compare the performances of the software packages BARON, COUENNE, and SparsePOP with RLT-POS.


Reformulation-Linearization Technique (RLT) Open-source code Constraint filtering strategies Valid inequalities Reduced RLT representations Polynomial programming 

Mathematics Subject Classification

65K05 90-08 90C26 90C57 



The authors gratefully acknowledge Nick Sahinidis at Carnegie Mellon University for permitting the use of the BARON solver.


  1. 1.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7, 337–363 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anstreicher, K.M.: Semidefinite programming versus the Reformulation-Linearization Technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43(2–3), 471–484 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balas, E., Ceria, S., Cornuejols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework (1996)Google Scholar
  5. 5.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, New York (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cafieri, S., Hansen, P., Létocart, L., Liberti, L., Messine, F.: Compact relaxations for polynomial programming problems. In: Klasing, R. (ed.) Experimental Algorithms, Lecture Notes in Computer Science, vol. 7276, pp. 75–86. Springer, Berlin (2012)Google Scholar
  8. 8.
    Dalkiran, E., Sherali, H.: Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality. J. Global Optim. 57(4), 1147–1172 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin Heidelberg, New York (1981)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ibm, ILOG CPLEX Optimization Studio.
  12. 12.
    Lasserre, J.B.: Semidefinite programming vs. LP relaxations for polynomial programming. Math. Operations Res. 27(2), 347–360 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Laurent, M., Rendl, F.: Semidefinite Programming and Integer Programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  15. 15.
    Liberti, L.: Linearity embedded in nonconvex programs. J. Global Optim. 33, 157–196 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Global Optim. 36, 161–189 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    MATLAB: version 7.12.0 (R2011a). The MathWorks Inc., Natick, Massachusetts (2011)Google Scholar
  18. 18.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8(2), 107–138 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Boston (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique (RLT) for semi-infinite and convex programs under mixed 0–1 and general discrete restrictions. Discrete Appl. Math. 157(6), 1319–1333 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sherali, H.D., Dalkiran, E.: Combined bound-grid-factor constraints for enhancing RLT relaxations for polynomial programs. J. Global Optim. 51(3), 377–393 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sherali, H.D., Dalkiran, E., Desai, J.: Enhancing RLT-based relaxations for polynomial programming problems via a new class of \(v\)-semidefinite cuts. Comput. Optim. Appl. 52(2), 483–506 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sherali, H.D., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programs. J. Global Optim. 52(3), 447–469 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Global Optim. 22(1–4), 233–261 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique. J. Global Optim. 2(1), 101–112 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Operations Res. Lett. 21(1), 1–9 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89(3), 459–478 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimiz. Methods Softw. 11(1–4), 625–653 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: SparsePOP—a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), 15:1–15:13 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zorn, K., Sahinidis, N.V.: Global optimization of general nonconvex problems with intermediate polynomial structures. J. Global Optim. 59(2–3), 673–693 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2016

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringWayne State UniversityDetroitUSA
  2. 2.Grado Department of Industrial and Systems EngineeringVirginia TechBlacksburgUSA

Personalised recommendations